DOI QR코드

DOI QR Code

Locomotion of Biped Robots on Irregular Surface Based on Pseudo-Impedance Model

의사-임피던스 모델을 이용한 비평탄면에서의 2족보행로봇의 보행

  • Received : 2009.02.03
  • Accepted : 2010.04.10
  • Published : 2010.06.01

Abstract

This paper proposes a control method based on a pseudo-impedance model to control the motion of biped robots walking on an uneven surface. The pseudo-impedance model simulates the action of the ankle of a foot landing on the ground when a human walks. When the foot is in contact with the ground, the human ankle goes through two different phases. In the first phase, the human exerts little or no effort and applies no torque on the ankle so that the orientation of the foot is effortlessly and passively adjusted with respect to the ground. In the second phase of landing, the ankle generates a significant amount of torque in order to rotate and move the main part of the human body forward and to support the weight of the human; this phase is called the weight acceptance phase. Computer simulations of a 12-DOF biped robot with a 6-DOF environment model were performed to determine the effectiveness of the proposed pseudo-impedance control. The simulation results show that stable locomotion can be achieved on an irregular surface by using the proposed model.

본 논문은 의사-임피던스 모델을 이용하여 2족보행로봇이 비평탄면에서 보행하는 제어기법을 제안한다. 의사-임피던스 모델은 인간이 보행 시, 발바닥이 지면과 순응하는 동작을 모사하였다. 지면과 접촉하면서 인간의 발바닥은 2가지 보행상태를 갖게 된다. 첫 번째 상태에서는 지면과 순응하기 위해 노력이나 의도적인 토크를 가하는 것이 아니라 수동적인 모션으로 순응하게 된다. 두 번째 상태에서는 지면과 접촉한 후, 적절한 토크를 유지하여 인간의 몸이 보행을 지속할 수 있게끔 유도하며 이를 하중이동단계라고 한다. 이러한 과정이 안정적으로 로봇의 보행을 유지할 수 있음을 12자유도의 2족보행로봇과 6축의 힘을 가지는 환경모델을 반영한 시뮬레이션을 통해 보여준다. 이러한 시뮬레이션결과가 제안된 의사-임피던스 모델이 효과적임을 보여준다.

Keywords

References

  1. Takanishi, A., Lim, H., Tsuda, M. and Kato, I., 1990, “Realization of Dynamic Biped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface,” Proc. of IEEE Int. Workshop on Intelligent Robots and Systems, pp. 323-330.
  2. Yamaguchi, J. and Takanishi, A., 1996, “Multisensor Foot Mechanism with Shock Absorbimg Material for Dynamic Biped Walking Adapting to Unknown Uneven Surface,” Proc. of IEEE/SICE/RSJ Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems, pp. 233-240.
  3. Yamaguchi, J., Kinoshita, N., Takanishi, A. and Kato, I., 1996, “Development of a Dynamic Biped Walking System for Humanoid –Development of a Biped Walking Robot Adapting to the Humans’ Living Floor,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 232-239.
  4. Kajita, S. and Tani, K., 1996, “Adaptive Gait Control of a Biped Robot Based on Realtime Sensing of the Ground Profile,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 570-577.
  5. Vukobratovic, M., Borovac, B., Surla, D. and Stokic, D., 1990, Biped locomotion – Dynamics, Stability, Control and Application, Springer-Verlag.
  6. Park, J. H. and Chung, H. A., 1999, “Impedance Control and Modulation for Stable Footing in Locomotion of Biped Robot,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.1786-1791.
  7. Fujimoto, Y., Obata, S. and Kawamura, A., 1998, “Robust Biped Walking with Active Interaction Control between Foot and Ground,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2030-2035.
  8. Wang, G., Huang, Q., Geng, J., Deng, H. and Li, K., 2003, “Cooperation of Dynamic Patterns and Sensory Reflex for Humanoid Walking,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp.2472-2477.
  9. Kim, E. S. and Park, J. H., 2005, “Foot Adjusting Motion on Irregularly Protruded Uneven Surface for Biped Robots,” Proc. of KSME 2005 Fall Annual Meeting, 2657-2652.
  10. Park, J. H. and Kim, E. S., 2009, “Foot and Body Control of Biped Robots to Walk on Irregularly Protruded Uneven Surface,” IEEE Trans. on System, Man, and Cybernetics, Part B: Cybernetics, Vol. 39, No. 1, pp. 289-297. https://doi.org/10.1109/TSMCB.2008.2003451
  11. Park, J. H. and Kim, K. D., 1998, “Biped Robot Walking Using Gravity Compensated Inverted Pendulum Mode and Computed Torque Control,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3528-3533.
  12. Chung, H. A. and Park, J. H., 2000, “Control of Biped Robots Based on Impedance Control and Computed-Torque Control,” Trans. of the KSME (A), Vol. 24, No. 6, pp. 1513-1519.
  13. Park, J. H., 2001, “Impedance Control of Biped Locomotion,” IEEE Trans. on Robotics and Automation, Vol. 17, No. 6, pp. 870-882. https://doi.org/10.1109/70.976014

Cited by

  1. Reference ZMP Trajectory Generation and Implementation for a Biped Robot via Linear Inverted Dumbbell Model (LIDM) vol.29, pp.4, 2012, https://doi.org/10.7736/KSPE.2012.29.4.417