• Title/Summary/Keyword: Irradiation Dose

Search Result 1,987, Processing Time 0.025 seconds

High Dose $^{60}Co\;{\gamma}$-Ray Irradiation of W/GaN Schottky Diodes

  • Kim, Jihyun;Ren, F.;Schoenfeld, D.;Pearton, S.J.;Baca, A.G.;Briggs, R.D.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.124-127
    • /
    • 2004
  • W/n-GaN Schottky diodes were irradiated with $^{60}Co\;{\gamma}-rays$ to doses up to 315Mrad. The barrier height obtained from current-voltage (I-V) measurements showed minimal change from its estimated initial value of ${\sim}0.4eV$ over this dose range, though both forward and reverse I-V characteristics show evidence of defect center introduction at doses as low as 150 Mrad. Post irradiation annealing at $500^{\circ}C$ increased the reverse leakage current, suggesting migration and complexing of defects. The W/GaN interface is stable to high dose of ${\gamma}-rays$, but Au/Ti overlayers employed for reducing contact sheet resistance suffer from adhesion problems at the highest doses.

ACUTE RESPONSE OF THE RAT INCISOR BY SINGLE AND FRACTIONATED IRRADIATION (단일 및 분할 방사선조사에 의한 백서절치의 급성반응에 관한 연구)

  • Rhee In-Suk;Park Tae-Won;Ahn Hyung-Kyu
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.19 no.1
    • /
    • pp.39-48
    • /
    • 1989
  • Six to eight-month-old female albino rats were used as experimental animals. As an irradiation equipment, a Co-60 was used. The experimental animals were divided to; 6 of the control group, 12 of the 500cGy single irradiation group, 12 of the 1000cGy fractionated irradiation group, and 12 of the 1500cGy fractionated irradiation group. From the first week to the forth, 3 rats were picked from each group every week to be sacrificed and fixed with formalin. Those rats were observed by means of H-E stain after being taken radiograph and decalcified. The analysis of radiographic findings and light microscopic findings gives results as follows: 1. The delay of dental eruption rate was found in every group which underwent the irradiation experiment. Dentin niche, osteodentin, and dentin island were formed in the parts which were damaged by the irradiation. 2. The longer the observation period was, the more deposit of osteodentin and dentin island was formed. 3. In the single irradiation group, the damage effect was in proportion to the increase of radiation dose, whereas the damage was much less in the fractionated group receiving the same dose. 4. The 500cGy single irradiation group got temporary repairable damage, while the 1000cGy single irradiation group got considerable damage and showed much slower eruption rate than the 500cGy single irradiation group. The basal portion of the 1500cGy single irradiation group, whose growth was arrested, was destroyed. 5. The fractionated group were irradiated 500cGy everyweek. Repair was visible during the interval periods. The damage was accumulated as irradiation repeated, but degree of damage was lower than that of the 1000cGy and 1500cGy single irradiation group.

  • PDF

Effects of Low-Dose Fractionated Total Body Irradiation on Murine Immune System (마우스에서 전신 저선량 분할 방사선 조사에 의한 면역학적 변화 평가)

  • Kim, Mi-Hyoung;Rhu, Sang-Young;Lim, Dae-Seog;Song, Jie-Young
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.134-141
    • /
    • 2014
  • Along with the wide use of radiotherapy in cancer treatment, there is growing interest in beneficial effect of low-dose irradiation (LDI) in cancer therapy. Therefore, we investigate how LDI affects immune responses in mice model. Total body irradiation (TBI) on C57BL/6 mice was given at low-dose rate of $1mGy{\cdot}min^{-1}$ using $^{137}Cs$ source at three times for consecutive three days. Hematological examination, total cell numbers of spleen, populations and characteristics of splenocytes were determined. Total numbers of RBC or platelet in irradiated mice showed no significant changes. WBC counts were decreased in a dose-dependent manner 2 days after TBI, however, these differences are gradually waned until 28 days. Dose-dependent decrease in the number of splenocytes of TBI mice at day 2 was also improved as time progressed. While the level of Foxp3 mRNA was decreased, the frequency of $CD4^+$ T cells and $CD69^+$ cells in spleen was increased at day 2 and 14. Fractionated low-dose TBI on mice exhibited normal body weight with no distinguishable behavior during whole experimental periods. These results suggest that some parameters of immune system could be altered and evaluated by fractionated low-dose TBI and be used to broaden boundary of low dose radiation research.

Studies on the Mutation Breeding in Castanea SP. (방사선(放射線)에 의(依)한 밤나무의 돌연변이(突然變異) 육종(育種)에 관(關)한 연구(硏究))

  • Kim, Chi Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.25 no.1
    • /
    • pp.80-84
    • /
    • 1975
  • The seeds, scions and plants of chestnut tree (Castanea. crenata) and Chinese chestnut tree (C. bungeana) were irradiated by gamma ray in order to know their biological effects on germination, plant growth and mutation at several accumulative doses and dose rates. The results of this study could be summarized as follows: 1. In general, the radio-sensitivity of scions was more sensitive to irradiation, showing 50% reduction dose of the control for grafting percentage at 3.1 kR as compared with 4.6 kR for the above reduction dose in germination rates of seeds. 2. The seeds treated by 5 kR dose resulted in some albino mutants at a rate of 0.84%. There was a general tendency that the seedling height reduced significantly as the irradiation dose increased. 3. The scions treated by an acute irradiation showed their 50% reduction dose in grafting at 3.2 kR for Chinese chestnut and at 3.1 kR for chestnut, respectively, while their irradiation doses increased three times, having 10.2 kR for the 50% reduction dose in the case of semi-acute irradiation. 4. When Chinese chestnut trees were irradiated during their dormant period with a total dose of 7.5 kR to 4.9 kR at a dose rate of 150 R to 98 R per day, there were induced giant leaf bud-sports at a frequency of 16.6%. The averag leaf area of the giant leaf bud-sports were measured at 96.36 square centimeters, while the area of normal leaf was only 26.28 square centimeters.

  • PDF

Effects of Gamma Irradiation on Taste Compounds in Processing of Low Salted and Fermented Squid (감마선 이용 저염 오징어젓갈 제조시 정미성분의 변화)

  • 변명우;이경행;김재훈;이주운;이은미;김영지
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1051-1057
    • /
    • 1999
  • The effects of gamma irradiation on taste compounds of low salted and fermented squid were investig ated. Salted and fermented squid products were prepared with salt concentrations of 5%, 10%, and 20% and was fermented at 15oC and 25oC after gamma irradiation with a dosage of 2.5~10 kGy. Amino nitrogen (AN), volatile basic nitrogen(VBN), trimethylamine(TMA), and hypoxanthine(Hx) contents were examined during the fermentation periods. Results showed that gamma irradiation had no effect on the initial con tents of AN, VBN, TMA, and Hx compared with non irradiated salted and fermented squid. During the fermentation periods, these contents rapidly increased in accordance with the decrease in NaCl concen tration and irradiation dose, and the increase in fermentation temperature. Specifically, the taste compounds of salted and fermented squid prepared with a NaCl concentration of 10% and an irradiation dose of 10 kGy maintained the appropriate level for the fermentation period at 15oC.

  • PDF

Physicochemical Properties of Gamma-Irradiated Corn Starch

  • Lee, Yong-Jin;Kim, Sun-Young;Lim, Seung-Taik;Han, Sag-Myung;Kim, Hye-Mi;Kang, Il-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.146-154
    • /
    • 2006
  • Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples. The degree of polymerization and the paste viscosity of irradiated starch samples dose-dependently decreased significantly with irradiation, and increased solubility and clarity were observed in the irradiated starch solution. In addition, the degree of retrogradation decreased as irradiation dose increased. Irradiation of corn starch has advantages over the ordinary acid or the enzyme hydrolysis modification methods. It does not affect the granular shape and crystalline phase of starch during hydrolysis, and the process can be carried out in dry state.

Sterilization of Freeze Dried Manila Clam (Ruditapes philippinarum) Porridge for Immuno-Compromised Patients

  • Song, Beom-Seok;Park, Jae-Nam
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.205-210
    • /
    • 2016
  • This study was conducted to evaluate the combined effect of gamma irradiation and different conditions (vacuum packaging, antioxidant and freezing) on the microbiological and sensory characteristics of freeze dried Manila clam porridge (MCP) for immuno-compromised patient food. MCP can be sterilized at 1 kGy to 10 kGy. The initial counts of total aerobic bacteria and yeast molds in the non-irradiated MCP were $2.4{\pm}0.5$ and $1.2{\pm}0.3{\log}\;CFU\;g^{-1}$, respectively, but gamma irradiation significantly decreased the total aerobic bacteria to below the detection limit ($1{\log}\;CFU\;g^{-1}$) (5 kGy). Moreover, gamma irradiation effectively eliminated yeasts/molds at dose below than 1 kGy. However, gamma irradiation accelerated the increase of lipid oxidation and therefore, decreased the sensory characteristics of MCP as irradiation dose increased. To improve the sensory qualities of gamma irradiated MCP, combination treatment (vacuum packaging, 0.1% vitamin C) were applied. There was no significant difference in the overall acceptance scores between the combined-treatment sample (5.6 points) and the non-irradiated samples (6.0). The results indicate that combination treatment (vacuum packaging, 0.1% vitamin C) may help to maintain the quality of MCP. Therefore, it considered that irradiation of MCP with combined treatment and this is an effective method for the consumption as a special purpose food such as for space travel or immuno-compromised patients.

Calculation of Dobe Distributions in Brachytherapy by Personal Microcomputer (Microcomputer를 이용한 근접조사 장치의 선량분포 계산)

  • Chu S. S.;Park C. Y.
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 1984
  • In brachytherapy, it is important to determine the positions of the radiation sources which are inserted into a patient and to estimate the dose resulting from the treatment. Calculation of the dose distribution throughout an implant is so laborious that it is rarely done by manual methods except for model cases. It is possible to calculate isodose distributions and tumor doses for individual patients by the use of a microcomputer. In this program, the dose rate and dose distributions are calculated by numerical integration of point source and the localization of radiation sources are obtained from two radiographs at right angles taken by a simulator developed for the treatment planning. By using microcomputer for brachytherapy, we obtained the result as following 1. Dose calculation and irradiation time for tumor could be calculated under one or five seconds after input data. 2. It was same value under$\pm2\%$ error between dose calculation by computer program and measurement dose. 3. It took about five minutes to reconstruct completely dose distribution for intracavitary irradiation. 4. Calculating by computer made remarkly reduction of dose errors compared with Quimby's calculation in interstitial radiation implantation. 5. It could calculate the biological isoffect dose for high and low dose rate activities.

  • PDF

Reducing Effect of Microorganism on Meat and Fish Products by Repeated γ-Irradiation at Low Dose (저선량 감마선 반복조사의 육류와 생선 중 미생물 저감효과)

  • Je, Gil-Soo;Chung, Duck-Hwa;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.92-97
    • /
    • 2015
  • The aim of this study is to examine the removal efficiency of pathogen (Escherichia coli O157:H7 and Salmonella typhimurium) on meat and fish products (packing condition: vacuum or not and storage temperature: $4^{\circ}C$ or $-20^{\circ}C$) repeatedly exposed at low-dose gamma irradiation. In case of meat products (beef and chicken), E. coli O157:H7 was not observed at the level of 2 kGy single gamma irradiation and 0.5 kGy repeated gamma irradiation and S. Typhimurium was not observed at the level of 2 kGy single gamma irradiation and 1 kGy repeated gamma irradiation. In case of fish products, E. coli O157:H7 and S. Typhimurium were not detected at the level of 0.5 kGy single and repeated gamma irradiation. These results showed that microorganisms on fish products were more efficiently removed than those of meat products with low-dose gamma irradiation. Generally, each packing condition made no difference. However, the products (fish and meat) stored at $-20^{\circ}C$ needed more higher dose gamma irradiation than products at $4^{\circ}C$.

The Dose Distribution of Arc therapy for High Energy Electron (고에너지 전자선 진자조사에 의한 선량분포)

  • Chu, S.S.;Kim, G.E.;Suh, C.O.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF