• 제목/요약/키워드: Iron reducing bacteria

검색결과 61건 처리시간 0.019초

철환원 박테리아에 의한 금속 환원 및 광물형성 (Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • 한국광물학회지
    • /
    • 제15권3호
    • /
    • pp.231-240
    • /
    • 2002
  • 미생물에 의한 금속이온의 환원은 탄소와 금속의 생지화학적 순환에 영향을 줄 뿐만 아니라 또한 금속, 방사성원소, 그리고 유기물로 오염된 지하수와 토양의 정화에 있어서 중요한 역할 가능성을 시사하고 있다. 지구의 극한 환경(예: 심해저 퇴적, 알칼리성 호수 등)에서 서식하는 철환원 박테리아를 분리하여 금속이온의 환원과 광물 형성 등의 실험에 이용하여 본 결과에 의하면, 이들 철환원 박테리아는 Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI)이온 등을 환원시킬 뿐만 아니라, 자철석($Fe_3$$O_4$), 능철석($FeCO_3$), 방해석($CaCO_3$), 능망간석($MnCO_3$), 비비아나이트 [$Fe_3$($PO_4$)$_2$ .$8H_2$O], 우라니나이트(UO) 등의 광물을 형성한다. 철 환원 박테리아에 의한 광물 형성과 금속이온의 환원에 영향을 미치는 주요소는 대기의 조성, 화학 조성, 및 박테리아의 종이다. 호열성 철환원 박테리아는 철수화물과 금속이온(Co, Cr, Ni) 등을 동시에 환원시켜 금속 치환된 자철석을 합성하며, 또한 석탄회 등을 이용하여 탄산염 광물을 형성하여 대기 중의 이산화탄소를 고정하는 역할을 하기도 한다. 따라서 미생물에 의한 금속이온이 환원은 자연계에서 철과 탄소의 지화학적인 순환에 영향 미치며, 또한 미생물에 의한 자철석의 합성은 산업적으로 많은 이용가치가 있을 것으로 본다.

생물환원 철광물촉매에 의한 지하수 내 RDX 환원:군사격장 현장적용 실증결과 (Reduction of RDX in Ground Water by Bio-Regenerated Iron Mineral: Results of Field Verification Test at a Miliary Shooting Range)

  • 공효영;이광표;이종열;경대승;이우진;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.62-72
    • /
    • 2015
  • This study investigates the in-situ implementation of bio-regenerated iron mineral catalyst to remove explosive compounds in ground water at a military shooting range in operation. A bio-regenerated iron mineral catalyst was synthesized using lepidocrocite (iron-bearing soil mineral), iron-reducing bacteria Shewanella putrefaciens CN32, and electron mediator (riboflavin) in the culture medium. This catalyst was then injected periodically in the ground to build a redox active zone acting like permeable reactive barrier through injection wells constructed at a live fire military shooting range. Ground water and core soils were sampled periodically for analysis of explosive compounds, mainly RDX and its metabolites, along with toxicity analysis and REDOX potential measurement. Results suggested that a redox active zone was formed in the subsurface in which contaminated ground water flows through. Concentration of RDX as well as toxicity (% inhibition) of ground water decreased in the downstream compared to those in the upstream while concentration of RDX reduction products increased in the downstream.

Effects of Extracellular Electron Shuttles on Microbial Iron Reduction and Heavy Metals Release from Contaminated Soils

  • Hwang, Yun Ho;Shim, Moo Joon;Oh, Du Hyun;Yang, Jung-Seok;Kwon, Man Jae
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권2호
    • /
    • pp.16-24
    • /
    • 2014
  • To test the potential effects of extracellular electron shuttles (EES) on the rate and extent of heavy metal release from contaminated soils during microbial iron reduction, we created anaerobic batch systems with anthraquinone-2,6-disulfonate (AQDS) as a surrogate of EES, and with contaminated soils as mixed iron (hydr)oxides and microbial sources. Two types of soils were tested: Zn-contaminated soil A and As/Pb-contaminated soil B. In soil A, the rate of iron reduction was fastest in the presence of AQDS and > 3500 mg/L of total Fe(II) was produced within 2 d. This suggests that indigenous microorganisms can utilize AQDS as EES to stimulate iron reduction. In the incubations with soil B, the rate and extent of iron reduction did not increase in the presence of AQDS likely because of the low pH (< 5.5). In addition, less than 2000 mg/L of total Fe(II) was produced in soil B within 52 d suggesting that iron reduction by subsurface microorganisms in soil B was not as effective as that in soil A. Relatively high amount of As (~500 mg/L) was released to the aqueous phase during microbial iron reduction in soil B. The release of As might be due to the reduction of As-associated iron (hydr)oxides and/or direct enzymatic reduction of As(V) to As(III) by As-reducing microorganisms. However, given that Pb in liquid phase was < 0.3 mg/L for the entire experiment, the microbial reduction As(V) to As(III) by As-reducing microorganisms has most likely occurred in this system. This study suggests that heavy metal release from contaminated soils can be strongly controlled by subsurface microorganisms, soil pH, presence of EES, and/or nature of heavy metals.

METHANOGENIC FERMENTATION OF FAT-CONTAINING WASTEWATER MEDIATED BY IRON

  • Zubair, A.;Ivanov, V.;Kim, In-S.
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.109-112
    • /
    • 2000
  • Long chain fatty acids (LCFA) are potential inhibitors of bacteria involved in anaerobic digestion because of their surface activity. Precipitation of long-chain fatty acids with iron can improve the anaerobic degradation due to their precipitation and reducing surface properties. Degradation of stearic acid was improved in the presence of iron (II). The methane production was increased 1.6 times as compared to control. Iron-containing soil was applied for degradation of vegetable oil as model case. The methane production was increased 1.5 times as compared to control. Yield of methane production was 0.09 and 0.06L/g COD in experiment and control respectively. Optimum COD/Fe ratio was found 20 mg/mg. Iron (II) can be produced in the treatment system from iron (III) hydroxide or iron containing minerals.

  • PDF

점토로부터 철불순물의 생물학적 제거에 미치는 탄소원의 영향

  • 이은영;조경숙;류희욱;배무
    • 한국미생물·생명공학회지
    • /
    • 제25권6호
    • /
    • pp.552-559
    • /
    • 1997
  • Fe (III) impurities in clay could be microbially removed by inhabitant dissimilatory Fe (III) reducing microorganisms. Insoluble Fe (III) in clay particles was leached out as soluble reductive form, Fe (II). The microorganisms removed from 10 to 45% of the initial Fe (III) when each sugar was supplemented to be in ranges of 1 - 5 % (w/w; sugar/clay). The microorganisms reduced 2.1 - 12.8 mol of Fe (III) per 100 mol of carbon in sugars metabolized when sugars such as glucose, maltose, and sucrose were used as sole carbon source. Bacillus sp. IRB-W and Pseudomonas sp. IRB-Y were isolated from the enrichment culture of the clay. The isolates were considered to participate in metabolizing organic compounds to fermentative intermediates with relatively little Fe (III) reduction at initial Fe (III) reduction process. By the microbial treatment, the whiteness of the clay was increased form 63.20 to 79.64, whereas the redness was obviously decreased form 13.47 to 3.55. This treatment did not cause any unfavorable modifications in mineralogical compositions of the clay.

  • PDF

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

황산환원균 Dseulfovibrio desulfricans의 혐기배양에 의한 가용성 우라늄의 침전 (Precipitation of Soluble Uranium in Anaerobic Culture of Desulfovibrio desulfricans)

  • 조규성;주현규;다야마사히또;도네세쯔지;홍고야쓰히로
    • 한국미생물·생명공학회지
    • /
    • 제21권3호
    • /
    • pp.269-275
    • /
    • 1993
  • The aims of the present study are to examine the precipitation of uranyl ion in the culture of Desulfovibrio desulfricans for the sedimentary recovery of aqueous uranium. D. desulfricans had the highest utilization rate of lactate and precipitated iron ion in the three sulfate reducing bacteria. So, subsequent experiments were conducted using lactate as an energy source. The normal growth was observed with increased pH and lactate utilization. During the culture, the amounts of SO42- consumed and S2- produced in aqueous phase were 8.5 and 7.5 mmol/m3-broth, respectively.

  • PDF

셀레늄-미생물간의 반응 및 셀레늄 광물화 특성 (Interaction between Selenium and Bacterium and Mineralogical Characteristics of Biotreated Selenium)

  • 이승엽;오종민;백민훈
    • 한국광물학회지
    • /
    • 제24권3호
    • /
    • pp.217-224
    • /
    • 2011
  • 철환원 박테리아인 미시가넨시스를 이용하여 용존 셀레늄을 제거할 때, 물 속의 다른 금속성분들인 철, 황산염, 그리 구리가 미칠 수 있 영향을 살펴보았다. 미시가넨시스 박테리아는 산화수가 4가인 산화 셀레나이트(2 mM)를 셀레나이드로 환원시키고 물속의 셀레늄 농도를 점차 감소시켰다. 환원된 셀레나이드는 용존 2가 철과 결합하여 나노입자 크기의 철-셀레나이드로 침전되었다. 용존 황산염과 구리는 미생물의 셀레나이트 환원작용에 부정적인 영향을 끼쳤는데, 특히 구리 성분은 미생물에 대해 독성으로 작용하여 셀레나이트 제거가 원활히 이뤄지지 못하게 하였다. 이러한 결과로부터 알 수 있는 것은 셀레늄으로 오염된 현장을 미생물로 정화할 때 황산염 혹은 구리의 농도 분포와 양을 충분히 고려해야 한다는 사실이다. 궁극적으로 미생물에 의한 철-셀레나이드 광물형성작용은 지하수를 따라 원거리로 이동할 수 있는 셀레늄의 확산을 억제하는 중요한 수단이라고 볼 수 있다.

실시간 정량 중합효소연쇄반응을 이용한 광산 배수의 수계 영향 평가 (Evaluation of the Effect of Mine Drainage on the Aquatic Environment by Quantitative Real-time PCR)

  • 한지선;서장원;지원현;박현성;김창균
    • 대한환경공학회지
    • /
    • 제32권2호
    • /
    • pp.121-130
    • /
    • 2010
  • 산성광산배수(Acid Mine Drainage; AMD)는 낮은 pH조건에서 중금속 및 황산염이온 등이 다량 용존되어 환경오염 문제를 발생시킨다. 국내의 폐광산 일부에서는 산성광산배수를 처리하기 위해 정화시설이 운영되고 있으나 여전히 주변 하천에 영향을 미치고 있다. 본 연구는 산성광산배수 및 영향을 받는 하천에서 지표미생물의 특이적 유전자를 실시간 정량 중합효소 연쇄반응(Real-time quantitative Polymerase Chain Reaction; Real-time qPCR)을 이용하여 확인 및 정량함으로써 광산배수의 환경영향을 미생물학적으로 판단하고자 수행되었다. 지표 종으로 선정한 미생물은 16S rRNA 미생물 군집분석 결과 발견된 미생물 중 철환원균인 Rhodoferax ferrireducens T118, Acidiphilium cryptum JF-5이며 이 외에 기존에 광산에 존재하는 것으로 알려진 미생물 중 호산성 황환원균인 Desulfosporosinus orientus, 철산화균인 Leptosprillum ferrooxidans, 철 및 황산화균인 Acidothiobacillus ferrooxidans이었다. 최종적으로, 본 연구에서 각 광산의 광산배수가 하천에 미치는 영향을 정량적으로 판단하여 비교하기 위해 광산배수로 인한 하천에서의 미생물 변동 지수를 산정하였으며 연구 대상 4개 광산 중 광산배수 처리시설이 없는 삼탄의 광산배수의 경우 주변 방류 하천으로의 미생물학적 환경영향이 가장 큰것으로 나타났다

황철석과 토착미생물이 광미를 활용한 전기 생산에 미치는 영향 (Effect of Pyrite and Indigenous Bacteria on Electricity Generation Using Mine Tailings)

  • 주원정;조은혜;남경필
    • Ecology and Resilient Infrastructure
    • /
    • 제2권1호
    • /
    • pp.93-98
    • /
    • 2015
  • 본 연구는 산성광산배수를 유발하는 광미를 연료전지 기술에 적용하여 유용하게 활용할 수 있는지 알아보기 위해 수행하였다. 황철석 성분을 함유한 광미와 철산화를 촉진하기 위한 철산화균을 포함한 토착세균을 사용하여 미생물연료전지를 구성하여, 광미 내 황철석 함량이 높을수록 연료전지의 전기적 효율이 향상됨을 확인하였다. 또한, 광미를 활용한 연료전지에서 토착세균 주입을 통해 전류밀도와 전력밀도를 각각 3배, 10배 정도 향상시켜, 철산화에 관여하는 미생물의 주입이 광미를 이용한 연료전지 효율 향상에 도움이 됨을 확인하였다. 본 연구는 광산 지역 토착세균의 생태학적 기능을 연료전지 기술과 활용해 광미로부터 오염유발 우려물질을 저감함과 동시에 전기 생산이 가능함을 확인하여, 광미를 활용한 미생물연료전지 기술이 광미의 무해화 및 전기 생산을 위한 기술로 사용될 수 있음을 보여준다.