DOI QR코드

DOI QR Code

Effect of Pyrite and Indigenous Bacteria on Electricity Generation Using Mine Tailings

황철석과 토착미생물이 광미를 활용한 전기 생산에 미치는 영향

  • Ju, Won Jung (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jho, Eun Hea (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Nam, Kyoungphile (Department of Civil and Environmental Engineering, Seoul National University)
  • 주원정 (서울대학교 건설환경공학부) ;
  • 조은혜 (한국외국어대학교 환경학과) ;
  • 남경필 (서울대학교 건설환경공학부)
  • Received : 2015.03.03
  • Accepted : 2015.03.20
  • Published : 2015.03.31

Abstract

Acid mine drainage (AMD) producing mine tailings can be beneficially recycled to generate electricity by applying fuel cell technology. Pyrite-containing mine tailings and indigenous bacteria from abandoned mine areas were used to construct fuel cells to investigate the effect of pyrite contents and the presence of iron-oxidizing bacteria. The results showed an enhanced electrical performance with a higher content of pyrite in mine tailings. The inoculation of the indigenous bacteria also enhanced the current density by about three times, and the power density by about 10 times. Overall, this study shows that the combined use of the ecological function of indigenous bacteria from mine areas and mine-tailings in fuel cells does not only contribute to reducing harmful effects of mine tailings but also generate electricity.

본 연구는 산성광산배수를 유발하는 광미를 연료전지 기술에 적용하여 유용하게 활용할 수 있는지 알아보기 위해 수행하였다. 황철석 성분을 함유한 광미와 철산화를 촉진하기 위한 철산화균을 포함한 토착세균을 사용하여 미생물연료전지를 구성하여, 광미 내 황철석 함량이 높을수록 연료전지의 전기적 효율이 향상됨을 확인하였다. 또한, 광미를 활용한 연료전지에서 토착세균 주입을 통해 전류밀도와 전력밀도를 각각 3배, 10배 정도 향상시켜, 철산화에 관여하는 미생물의 주입이 광미를 이용한 연료전지 효율 향상에 도움이 됨을 확인하였다. 본 연구는 광산 지역 토착세균의 생태학적 기능을 연료전지 기술과 활용해 광미로부터 오염유발 우려물질을 저감함과 동시에 전기 생산이 가능함을 확인하여, 광미를 활용한 미생물연료전지 기술이 광미의 무해화 및 전기 생산을 위한 기술로 사용될 수 있음을 보여준다.

Keywords

References

  1. Bacelar-Nicolau, P. and Johnson, D.B. 1999. Leaching of pyrite by acidophilic iron-oxidizing bacteria in pure and mixed cultures. Applied and Environmental Microbiology 65: 585-590.
  2. Baker, B.J. and Banfield, J.F. 2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology 44: 139-152. https://doi.org/10.1016/S0168-6496(03)00028-X
  3. Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J.J., and Behra, P. 1998. Surface oxidation of pyrite as a function of pH. Environmental Science & Technology 32: 2839-2845. https://doi.org/10.1021/es980213c
  4. Cheng, S., Dempsy, B.A., and Logan, B.E. 2007. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environmental Science & Technology 41: 8149-8153. https://doi.org/10.1021/es0712221
  5. Evangelou, V.P. 1995. Pyrite Oxidation and Its Control. CRC Press, North West, F.L., USA.
  6. Gleisner, M., Herbert Jr, R.B., and Kockum, P.C.F. 2006. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chemical Geology 225: 16-29. https://doi.org/10.1016/j.chemgeo.2005.07.020
  7. Ji, M.K., Yoon, H.S., Ji, E.D., Lee, W.R., Park, Y.T., Yang, J.S., Jeon, B.H., Shim, Y.S., Kang, M.H., and Choi, J.Y. 2010. Development of control technology for acid mine drainage by coating on the surface of pyrite using chemicals. Journal of Soil and Groundwater Environment 15: 46-52.
  8. Johnson, D.B. and Hallberg, K.B. 2005. Acid mine drainage remediation options: a review. Science of the Total Environment 338: 3-15. https://doi.org/10.1016/j.scitotenv.2004.09.002
  9. Ju, W.J., Jho, E.H., and Nam, K. 2014. From mine tailings to electricity using ecological function: Evaluation of increase in current density by increasing the oxidation rate of pyrite using iron oxidizing bacteria. Ecology and Resilient Infrastructure 1: 19-24. (in Korean) https://doi.org/10.17820/eri.2014.1.1.019
  10. KIGAM. 2014a. Yearbook of Mineral Statistics. Mineral Commodity Information, Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea. (in Korean)
  11. KIGAM. 2014b. Research, Analysis, and Evaluation of Geological and Environmental Hazards from Mining Activity. Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea. (in Korean)
  12. Leduc, L. and Ferroni, G. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiology Reviews 14: 103-119. https://doi.org/10.1111/j.1574-6976.1994.tb00082.x
  13. Logan, B.E. 2008. Microbial fuel cells. John Wiley and Sons. Hoboken, N.J., USA.
  14. MRC. 2013. Yearbook of MIRECO Statistics. Mine Reclamation Corp., Jongno-gu, Seoul, Korea. (in Korean)
  15. MRC. 2014. Prevention of loss of mine tailings. Mine Reclamation Corp. http://www.mireco.or.kr/template01.csp?wid=NW01010401. Accessed 10 February 2014. (in Korean)
  16. O'Hayre, R.P., Cha, S.-W., Colella, W., and Prinz, F.B. 2006. Fuel Cell Fundamentals. John Wiley and Sons, New York, N.Y., USA.
  17. Pesic, B. and Oliver, D.J. 1989. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnology and Bioengineering 33: 428-439. https://doi.org/10.1002/bit.260330408
  18. Rodriguez, Y., Ballester, A., Blazquez, M.L., Gonzalez, F., and Munoz, J.A. 2003. Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerie. Geomicrobiology Journal 20: 131-141. https://doi.org/10.1080/01490450303880
  19. Silverman, M.P. and Lundgren, D.G. 1958. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. an improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology 77: 642-647.
  20. Weber, K.A., Achenbach, L.A., and Coates, J.D. 2005. Microorganism pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4: 752-764.

Cited by

  1. Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.279
  2. Determining the reuse of metal mine wastes based on leaching test and human health risk assessment vol.24, pp.1, 2018, https://doi.org/10.4491/eer.2017.211