• Title/Summary/Keyword: Iron Particles

Search Result 357, Processing Time 0.019 seconds

The Variation Rate of Shear Modulus for Anisotropic Magneto-rheological Elastomer due to Volume Fraction of CIP (CIP 부피비에 따른 이방성 MRE의 전단계수 변화율)

  • Jeong, Un-Chang;Yoon, Ji-Hyun;Yang, In-Hyung;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1132-1137
    • /
    • 2011
  • MRE(magneto-rheological elastomers) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb vibration of broader frequency range. These characteristic phenomena result from the orientation of magnetic particles named carbonyl iron powder(CIP) in rubber matrix. In this paper, simulation on variation rate of shear modulus for anisotropic MRE due to volume fraction of CIP and an effective permeability model was applied to predict the field-induced shear modulus of MREs. Also, the variation rate of shear modulus for anisotropic MRE was derived using magneto-mechanical theory. Based on Maxwell-Garnett mixing rule, the increment of shear modulus was calculated to evaluate the shear modulus of MREs with column structure of CIP due to induced current. The simulation results on variation rate of shear modulus can be applied to the variable mechanical system of MRE such as tunable vibration absorber, stiffness variable bush and mount.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Microbial Synthesis of Cobalt-Substituted Magnetite Nanoparticles by Iron Reducing Bacteria (미생물을 이용한 나노입자의 코발트로 치환된 자철석의 합성)

  • Yul Roh;Hi-Soo Moon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. Cobalt-substituted magnetite nanoparticles were synthesized by a thermophilic iron(III)-reducing bacterium, TOR-39, under anaerobic conditions using amorphous Fe(III) oxyhydroxides plus cobalt ( $Co^{2+}$ and $Co^{3+}$ ) as an electron acceptor and organic carbon as an electron donor. Microbial processes produced copious amounts of nm-sized cobalt substituted magnetites. Chemical analysis and X-ray powder diffraction analysis showed that cobalt was substituted into biologically facilitated magnetites. Microbially facilitated synthesis of the cobalt-substituted magnetites may expand the possible use of the specialized ferromagnetic particles.

  • PDF

Solid State Reduction of Haematite by Mechanical Alloying Process (기계적 합금화법에 의한 헤마타이트의 고상환원)

  • 이충효;홍대석;이만승;권영순
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

Study of Mechanically Alloyed Nano Cu-Fe Particles With a Hetero-Structure (헤테로 구조 Cu-Fe 나노분말의 제조 연구)

  • Uhm, Y.R.;Lee, H.M.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.97-100
    • /
    • 2007
  • The magnetic alloys of Cu-Fe ($Cu_{50}Fe_{50},\;Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$) were prepared by a mechanical alloying method and their structural and magnetic behaviors were examined by X-ray diffraction and Mossbauer spectra. The magnetization curves did not distinctly show the saturation at 70 kOe for the concentrated alloys of $Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$. The Mossbauer spectrum of $Cu_{80}Fe_{20}$ at room temperature shows one Lorentzian line of the paramagnetic phase, whereas the Mossbauer spectrum of $Cu_{90}Fe_{10}$ consists of sextet Lorentzian line at room temperature and a centered doublet line. The Mossbauer spectra of $Cu_{90}Fe_{10}$ measured in the temperature ranges from 13 to 295 K, implies that $Cu_{90}Fe_{10}$ to consists of two magnetic phases. One superimposed sextet corresponds to the ferromagnetic iron in Cu and the other one indicates the superparamagnetic iron rich phase.

Development of Supporting Materials with Curdlan and Activated carbon for Microbial Immobiliaztion (Curdlan과 활성탄을 이용한 미생물 고정화 담체개발)

  • 손효진;박양호;권규혁;이중헌
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.243-247
    • /
    • 2003
  • The microbial immobilization media with curdlan and activated carbon which has great immobilization capacity has been developed. Characteristics of porosity and mechanical strength of this support media are dependent on manufacturing method. The support media showed the best cell immobilization performance when the ratio of curdlan and activated carbon was 30 g/L to 6 g/L in this study. The immobilization of iron-oxidizing bacteria on the supporting particles was photographed with a scanning electron microscope. Since cell concentration on the surface of supporting particle increased with the reaction time, the iron oxidation rate also increased.

Pyrocarbon Whisker Growth on the Catalytic Mullite Substrate by the Pyrolysis of Methane

  • Rhee, Bosung;Park, Young-Tae
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.101-105
    • /
    • 2005
  • Like bamboo-sprouts after rains, numerous sub${\mu}m$-sized pyrocarbon whiskers growth on the Mullite ($3Al_2O_3{\cdot}2H_2O$) substrate could be observed through a looking glass during methane pyrolysis at the temperature of $1050^{\circ}C$ in this study. If the surface of substrate would be scrubbed strongly with iron metals, then finely sticked iron particles were more effective catalytic for nm-sized whisker growth. Numerous fine flakes of pyrolytic carbon were hanging by invisible nm-whiskers as like as small spiders hanging by a spiderweb. This is the identification of nm-sized whisker growth. Therefore if the pyrolysis would be stopped at the initial stage of the whisker growth, the primary lengthening growth was nm-sized whisker. So could we vary arbitrarily sizes of whisker from nm- to ${\mu}m$-sizes. But ${\mu}m$- and nm-whiskers grown with the different growth mechanism; the former was straight and the latter has twigs, The lengthening growth of whisker was depended on the flow pattern pyrolysis species on the active sites of substrate and on the growth duration. We could obtained straight whisker length of 10~20 ${\mu}m$/min during the primary growth and laboratory spiral whisker of 30~40 ${\mu}m$-diameter/hr during the secondary growth.

  • PDF

Fabrication of Fe-TiB2 Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis

  • Khoa, H.X.;Tuan, N.Q.;Lee, Y.H.;Lee, B.H.;Viet, N.H.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.221-227
    • /
    • 2013
  • $TiB_2$-reinforced iron matrix composite (Fe-$TiB_2$) powder was in-situ fabricated from titanium hydride ($TiH_2$) and iron boride (FeB) powders by the mechanical activation and a subsequent reaction. Phase formation of the composite powder was identified by X-ray diffraction (XRD). The morphology and phase composition were observed and measured by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The results showed that $TiB_2$ particles formed in nanoscale were uniformly distributed in Fe matrix. $Fe_2B$ phase existed due to an incomplete reaction of Ti and FeB. Effect of milling process and synthesis temperature on the formation of composite were discussed.

Influence Factor on Magnetization Property of Carbonyl Iron-based Magnetorheological Fluids

  • Wang, Daoming;Zi, Bin;Qian, Sen;Qian, Jun;Zeng, Yishan
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.622-628
    • /
    • 2016
  • Magnetization property is a critical factor for magnetorheological fluids (MRFs) to achieve the liquid-solid transition. The main focus of this study is on exploring the influence factors on magnetization properties of MRFs. In this paper, a theoretical analysis is performed to discuss the magnetization characteristics of MRFs firstly. Then, a method for the preparation of carbonyl iron-based MRFs is illustrated and five MRFs samples with various material parameters are prepared. It is succeeded by a series of experiments on testing the hysteresis loop and the magnetization curve of each sample and the influence factors are compared and analyzed. Experimental results indicate that there is basically no hysteresis phenomenon on MRFs which exhibits superparamagnetic behavior at room temperature. A surfactant coating on magnetic particles can slightly improve the MRFs magnetization. Additionally, the magnetic susceptibility and the saturation magnetization both increase with the particle concentration, whereas the influence of particle diameter is relatively very small. Moreover, as the temperature increases, the magnetization decreases and the declining rate accelerates gradually.

Fractal Nature of Magnetic Colloidal Dispersion with Cobalt Iron Oxide and Metal Iron Particles

  • Yoon, Kwan Han;Lee, Young Sil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.125-131
    • /
    • 2022
  • The microstructure of highly aggregated colloidal dispersions was investigated by probing the rheological behavior of magnetic suspensions. The dynamic moduli as functions of frequency and strain amplitude are shown to closely resemble that of colloidal gels indicating the formation of network structure. The two types of characteristic critical strain amplitudes, γc and γy, were characterized in terms of the changing microstructure. The amplitude of γc indicates the transition from linear to nonlinear viscoelasticity and depends only on particle volume fraction not magnetic interactions. The study of scaling behavior suggests that it is related to the breakage of interfloc, i.e., floc-floc structure. However, yielding strain, γy, was found to be independent of particle volume fraction as well as magnetic interaction. It relates to extensive deformation resulting in yielding behavior. The scaling of elastic constant, Ge, implies that this yielding behavior and hence γy is due to the breakage of long-range interfloc interactions. Also, the deformation of flocs due to increase strain was indicated from the investigation of the fractal nature.