• 제목/요약/키워드: Iron Impregnation

검색결과 26건 처리시간 0.028초

Observation for Machinability of Hardening Particle Dispersed Iron Based Sintered Alloy

  • Tamori, Ryo;Ishihara, Naoshi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.301-302
    • /
    • 2006
  • Machinability and machining mechanism were examined in the case where resin impregnation treatment was conducted to the Mo-Co hardening particle dispersed iron-based sintered alloy. As a result, the force required for machining decreased significantly compared with the case where resin impregnation treatment was not conducted. This effect is considered to be attributable to the embrittlement of cutting chips produced by the minimization of the cut material deformation.

  • PDF

활성탄 개질에 따른 표면 특성 변화가 2,4-dichlorophenol 흡착성능에 미치는 영향 (Effects of chemical modification on surface characteristics and 2,4-dichlorophenol adsorption on activated carbon)

  • 안선경;송원중;박용민;양현아;권지향
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.425-435
    • /
    • 2020
  • Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.

칼럼실험에 의한 입상활성탄에서 Enterococcus faecalis의 부착 연구 (Analysis of Enterococcus faecalis Attachment to Granular Activated Carbon with a Column Experiment)

  • 김현정;박성직;이창구;한용운;김성배
    • 대한환경공학회지
    • /
    • 제31권2호
    • /
    • pp.119-124
    • /
    • 2009
  • 본 연구의 목적은 입상활성탄에서 이온강도와 철첨착이 Enterococcus faecalis의 부착에 미치는 영향을 분석하는 것이다. 야자계 입상활성탄(c-GAC), 철첨착된 야자계 입상활성탄(fc-GAC), 산세척된 야자계 입상활성탄(a-GAC), 그리고 철첨착된 산세척 야자계 입상활성탄(fa-GAC)에서 박테리아 부착을 관찰하기 위하여 두 가지 용액조건(NaCl 1, 10 mM)에서 칼럼실험을 수행하였다. 실험결과, c-GAC에서 이온강도가 1에서 10 mM로 증가함에 따라 박테리아의 질량회수율은 77.3에서 61.6%로 감소하였고, a-GAC에서는 질량회수율이 71.6에서 32.3%로 감소하였다. 이는 이온강도가 증가함에 따라 입상활성탄에서 박테리아의 부착이 증진될 수 있음을 나타낸다. 한편, fc-GAC에서 질량회수율은 62.6% (1 mM)과 53.3% (10 mM)이었고, fa-GAC에서는 50.8% (1 mM)과 16.9% (10 mM)이었는데, 이들 질량회수율이 c-GAC와 a-GAC에서의 질량회수율보다 낮았다. 이는 철첨착에 의하여 입상활성탄에서 박테리아의 부착이 증진될 수 있음을 나타낸다. 본 연구는 입상활성탄에서 박테리아의 부착과 관련하여 이온강도와 철수산화물 첨착의 영향에 대한 정보를 제공하고, 나아가 표면이 변형된 입상여재를 이용한 미생물의 제거에 관한 지식을 증진시킬 것이다.

Synthesis and Characterization of Fe-Co/mesoHZSM-5 : Effect of Desilication Agent and Iron-cobalt Composition

  • Jimmy, Jimmy;Roesyadi, Achmad;Suprapto, Suprapto;Kurniawansyah, Firman
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.163-169
    • /
    • 2020
  • Synthesis of Fe-Co/meso-HZSM5 catalyst, intended to be applied in Fischer-Tropsch (FT) reaction was investigated. The study emphasized the effect of desilication agents, NaOH and KOH, on the catalyst materials properties. Impregnation composition of active metal (Fe and Co) was also examined. HZSM-5, converted from ammonium ZSM-5 through calcination, was treated with NaOH and KOH for desilication, followed by impregnation with 10% metal loading. Fe composition in the initial mixture was varied at 10-50% from total composition. After impregnation, reduction was applied by flowing hydrogen gas at 400 ℃ for 10 hours. The use of KOH solution induced greater mesoporous volumes; however, it had a detrimental effect on zeolite crystal structure. NaOH solutions, on the other hand, increased mesopore area as high as 100%, indicated from surface area increase from 266.28 m2/g of HZSM-5, to 526.03 m2/g of NaOH-desilicated HZSM-5. In addition, the application of NaOH solution increased pore volume from 0.14 cc/g to 0.486 cc/g. Further, more Fe-Co alloys and less oxide of iron (Fe2O3) as well cobalt (Co3O4) had been commonly observed in the produced catalysts. The largest Fe-Co alloys could be found in 50Fe-50Co/HZSM-5

Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water

  • Oh, Won-Chun;Bae, Jang-Soon
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.667-674
    • /
    • 2008
  • In this study, we prepared Fe-activated carbon fiber(ACF)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as the titanium source for ACF pre-treated with iron compounds through the impregnation method. In terms of textural surface properties, the composites demonstrate a slight decrease in the BET surface area of the samples and an increase in the amount of iron compounds treated. The surface morphology of the Fe-ACF/$TiO_2$ composites was characterized by means of SEM. The composites have a porous texture with homogenous compositions of Fe and titanium dioxide distributed on the sample surfaces. The phase formation and structural transition of the iron compounds and titanium dioxide were observed in X-ray diffraction patterns of the Fe-ACF/$TiO_2$ composites. The chemical composition of the Fe-ACF/$TiO_2$ composites, which was investigated with EDX shows strong peaks for the C, O, Fe and Ti elements. The photo degradation results confirm that the Fe-ACF/$TiO_2$ composites show excellent removal activity for the COD in piggery waste due to photocatalysis of the supported $TiO_2$, radical reaction by Fe species, and the adsorptivity and absorptivity of ACF.

개질된 Nanoscale Zero-Valent Iron을 이용한 질산성질소 처리 (Removal of Nitrate by modified Nanoscale Zero-Valent Iron)

  • 김홍석;안준영;황경엽;박주양;황인성
    • 상하수도학회지
    • /
    • 제23권4호
    • /
    • pp.471-479
    • /
    • 2009
  • A Nanoscale Zero-Valent Iron(NZVI) was modified to build a reactor system to treat nitrate. Shell layer of the NZVI was modified by slow exposure of the iron surface to air flow, which produced NZVI particles that are resistant to aerial oxidation. A XANES (X-ray Absorption Near-Edge Structure) analysis revealed that the shell consists of magnetite ($Fe_3O_4$) dominantly. The shell-modified NZVI(0.5 g NZVI/ 120 mL) was able to degrade more than 95% of 30 mg/L of nitrate within $30 hr^{-1}$ ( pseudo first-order rate constant($k_{SA}$) normalzed to NZVI surface area ($17.96m^2/g$) : $0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$). Ammonia occupied about 90% of degradation products of nitrate. Nitrate degradation efficiencies increased with the increase of NZVI dose generally. Initial pH values of the reactor systems at 4, 7, and 10 did not affect nitrate removal rate and final pH values of all experiments were near 12. Nitrate removal experiments by using the shell-modified NZVI immobilized on a cellulose acetate (CA) membrane were also conducted. The nitrate removal efficiency of the CA membrane supported NZVI ($k_{SA}=0.0036L{\cdot}m^{-2}{\cdot}hr^{-1}$) was less than that of the NZVI slurries($k_{SA}=0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$), which is probably due to less surface area available for reduction and to kinetic retardation by nitrate transport through the CA membrane. The detachment of the NZVI from the CA membrane was minimal and impregnation of up to 1 g of NZVI onto 1 g of the CA membrane was found feasible.

철침착 입상활성탄(Fe-GAC)을 이용한 지하수 내 비소 제거기술 (Arsenic Removal Using Iron-impregnated Ganular Activated Carbon (Fe-GAC) of Groundwater)

  • 윤지영;고경석;유용재;전철민;김규범
    • 자원환경지질
    • /
    • 제43권6호
    • /
    • pp.589-601
    • /
    • 2010
  • 최근 들어 지질기원에 의해 발생되는 지하수내 비소오염이 많이 보고되고 있다. 본 연구에서는 지하수내 비소를 효과적으로 제거하거 위하여 철침착 입상활성탄(Fe-GAC)을 제조하고 이에 대한 흡착능을 평가하였다. Fe-GAC는 질산 염철 용액으로 입상활성탄에 철화합물을 침착시켜 제조하였으며, 이를 이용하여 침착반응시간에 따른 등온흡착, pH에 따른 비소 동력학 흡착반응 및 수처리시스템 예비평가를 위한 칼럼 실험을 수행하였다. 연구결과 침착반응 시간이 최소 12시간 이상에서 비소 제거에 필요한 철의 함량을 가진 Fe-GAC가 제조되었으며, 이들의 흡착능은 등온흡착실험에서도 확인되었다. 입상활성탄에 침착된 철화합물은 XRD 분석결과 대부분 질산염수산화철($Fe_4(OH)_{11}NO_3{\cdot}2H_20$)이었으나 일부 소량의 적철석($Fe_2O_3$)도 관찰되었다. 등온흡착실험은 Langmuir가 Freundlich 모델보다 더 적합하였으며, 모델링 결과 얻어진 Freundlich 분배계수($K_F$) 및 Langmuir 최대 흡착량($Q_m$)은 입상활성탄에 침착된 철 함량과 로그-로그 양의 상관관계를 보여주었다. 동력학 흡착실험 결과 pH 11을 제외한 모든 조건 (pH 4-9)에서 Fe-GAC는 비소에 대해 뛰어난 흡착능을 나타내었으며, 따라서 일반적인 지하수의 pH가 6-8 사이임을 고려하면 Fe-GAC는 비소를 흡착에 매우 효과적인 흡착제로 이용될 것이다. 동력학 모델링 결과 Fe-GAC와 비소의 흡착은 화학적 흡착(chemisorption) 과정을 나타내는 pseudo-second order 모델이 가장 적합하였다. 비소 수처리시스템에 대한 예비 평가를 위하여 칼럼실험을 수행한 결과, 지연계수 482.4이고 분배계수 581.1 L/mg으로 이는 12-24시간 침착반응에서 제조된 Fe-GAC의 Freundlich 등온흡착 모델의 분배계수(511.5-592.5 L/mg)와 유사한 값을 나타내었다. 이러한 연구결과는 향후 지하수를 활용하는 마을상수도 수처리시스템에서 Fe-GAC가 지하수의 비소를 제거하는 뛰어난 흡여재로 사용될 수 있음을 나타내는 것이다.

Synthesis of magnetite iron pumice composite for heterogeneous Fenton-like oxidation of dyes

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • 제9권3호
    • /
    • pp.161-173
    • /
    • 2020
  • The removal of two dyes, namely Methylene Blue (MB) and Reactive Brillant Red (RR) from aqueous solution was investigated using magnetite iron coated pumice (MIP) composite in the Fenton-like oxidation process. A weight ratio of 2.5 g (with the molar ratio of Fe3+ to Fe2+ to be 2) (5%) of iron to the total pumice (50 g) was enabled during synthesis of catalyst. Surface composition and characteristics of the catalyst were assessed by SEM-EDX, FT-IR, Raman spectral analysis. The effect of the amount of pumice solely used or MIP, H2O2 concentration, pH and initial concentration of MB or RR dyes on Fenton-like process efficiency was investigated. EDAX spectrums of pumice and MIP showed that oxygen and silisium are the major elements. The Fe content of MIP increased to 2.24%. SEM, FT-IR and Raman spectrums confirmed the impregnation of Fe on pumice surface. The experimental results revealed that high removal rates of dyes could be obtained using MIP that demonstrated a higher stability for removal of MB dye. pH affected the removal efficiency of both dyes and the degradation of both dyes was sharply dropped when pH was increased above 4. The removal of dyes did not significantly change with increasing H2O2 concentration. Degradation rates of both MB and RR dyes increased 3.3 and 2.8 times with the use of MIP compared to pumice alone, respectively. Furthermore, MIP enabled a good removal efficiency at higher dye concentrations. It can be emphasized that MIP composite can be used in the heterogeneous Fenton-like systems considering the economic and easily separation aspects.

철 함침 낙엽 Biochar에 의한 음이온성 염료의 흡착특성 (Adsorption Characteristics of Anionic Dye by Fe-Decorated Biochar Derived from Fallen Leaves)

  • 박종환;김홍출;김영진;서동철
    • 한국환경농학회지
    • /
    • 제39권4호
    • /
    • pp.289-296
    • /
    • 2020
  • BACKGROUND: There is a need for a revolutionary method to overcome the problem of biochar, which has relatively low adsorption capacity for existing anion pollutants, along with collectively recycling fallen leaves, a kind of forest by-product. Therefore, the objective of this study was to prepare iron-decorated biochar derived from fallen leaves (Fe-FLB), and to evaluate their adsorption properties to Congo red (CR) as anionic dye. METHODS AND RESULTS: The adsorption properties of CR by fallen leaves biochar (FLB) and Fe-FLB were performed under various conditions such as initial CR concentration, reaction time, pH and dosage with isotherm and kinetic models. In this study, Fe-FLB prepared through iron impregnation and pyrolysis of fallen leaves contained 56.9% carbon and 6.3% iron. Congo red adsorption by FLB and Fe-FLB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of FLB and Fe-FLB were 1.1 mg/g and 25.6 mg/g, respectively. In particular, it was found that the adsorption of CR was occurred by chemical adsorption process by the outer boundary layer of Fe-FLB. CONCLUSION: Overall, the production of Fe-FLB using fallen leaves and using it as an anion adsorbent is considered to be a way to overcome the problem of biochar with relatively low anion adsorption in addition to the reduction effect of waste.

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater

  • Niaei, Hadi Adel;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.173-181
    • /
    • 2020
  • Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.