Arsenic Removal Using Iron-impregnated Ganular Activated Carbon (Fe-GAC) of Groundwater

철침착 입상활성탄(Fe-GAC)을 이용한 지하수 내 비소 제거기술

  • Yoon, Ji-Young (Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Ko, Kyung-Seok (Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Yu, Yong-Jae (Department Geoenvironmental Sciences, Chungnam National University) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Kim, Gyoo-Bum (K-water Institute, Korea Water Resources Corporation)
  • Received : 2010.10.10
  • Accepted : 2010.12.09
  • Published : 2010.12.28

Abstract

Recently it has been frequently reported arsenic contamination of geologic origin in groundwater. The iron-impregnated ranular activated carbon (Fe-GAC) was developed for effective removal of arsenic from groundwater n the study. Fe-GACs were prepared by impregnating iron compounds into a supporting medium (GAC) with 0.05 M iron nitrate solution. The materials were used in arsenic adsorption isotherm tests to know the effect of iron impregnation time, batch kinetic tests to understand the influence of pH, and column tests to evaluate for the preliminary operation of water treatment system. The results showed that the minimum twelve hours of impregnation time were required for making the Fe-GAC with sufficient iron content for arsenic removal, confirmed by a high arsenic adsorption capacity evaluated in the isotherm tests. Most of the impregnated iron compounds were iron hydroxynitrate $Fe_4(OH)_{11}NO_3{\cdot}2H_2O$ but a mall quantity of hematite was also identified in X-ray diffraction(XRD) analysis. The batch isotherms of Fe-GAC for arsenic adsorption were well explained by Langmuir than Freundlich model and the iron contents of Fe-GAC have positive linear correlations on logarithmic plots with Freundlich distribution coefficients ($K_F$ and Langmuir maximum adsorption capacities ($Q_m$. The results of kinetic experiments suggested hat Fe-GAC had he excellent arsenic adsorption capacities regardless of all pH conditions except for pH 11 and could be used a promising adsorbents for groundwater arsenic removal considering the general groundwater pH range of 6-8. The pseudo-second order model, based on the assumption that the ate-limiting step might be chemisorption, provided the best correlation of the kinetic experimental data and explained the arsenic adsorption system f Fe-GAC. The column test was conducted to valuate the feasibility of Fe-GAC use and the operation parameters in arsenic groundwater treatment system. The parameters obtained from the column test were the retardation actor of 482.4 and the distribution coefficient of 581.1 L/mg which were similar values of 511.5-592.5 L/mg acquired from Freundlich batch isotherm model. The results of this study suggested that Fe-GAC could be used as promising adsorbent of arsenic removal in a small groundwater supply system with water treatment facility.

최근 들어 지질기원에 의해 발생되는 지하수내 비소오염이 많이 보고되고 있다. 본 연구에서는 지하수내 비소를 효과적으로 제거하거 위하여 철침착 입상활성탄(Fe-GAC)을 제조하고 이에 대한 흡착능을 평가하였다. Fe-GAC는 질산 염철 용액으로 입상활성탄에 철화합물을 침착시켜 제조하였으며, 이를 이용하여 침착반응시간에 따른 등온흡착, pH에 따른 비소 동력학 흡착반응 및 수처리시스템 예비평가를 위한 칼럼 실험을 수행하였다. 연구결과 침착반응 시간이 최소 12시간 이상에서 비소 제거에 필요한 철의 함량을 가진 Fe-GAC가 제조되었으며, 이들의 흡착능은 등온흡착실험에서도 확인되었다. 입상활성탄에 침착된 철화합물은 XRD 분석결과 대부분 질산염수산화철($Fe_4(OH)_{11}NO_3{\cdot}2H_20$)이었으나 일부 소량의 적철석($Fe_2O_3$)도 관찰되었다. 등온흡착실험은 Langmuir가 Freundlich 모델보다 더 적합하였으며, 모델링 결과 얻어진 Freundlich 분배계수($K_F$) 및 Langmuir 최대 흡착량($Q_m$)은 입상활성탄에 침착된 철 함량과 로그-로그 양의 상관관계를 보여주었다. 동력학 흡착실험 결과 pH 11을 제외한 모든 조건 (pH 4-9)에서 Fe-GAC는 비소에 대해 뛰어난 흡착능을 나타내었으며, 따라서 일반적인 지하수의 pH가 6-8 사이임을 고려하면 Fe-GAC는 비소를 흡착에 매우 효과적인 흡착제로 이용될 것이다. 동력학 모델링 결과 Fe-GAC와 비소의 흡착은 화학적 흡착(chemisorption) 과정을 나타내는 pseudo-second order 모델이 가장 적합하였다. 비소 수처리시스템에 대한 예비 평가를 위하여 칼럼실험을 수행한 결과, 지연계수 482.4이고 분배계수 581.1 L/mg으로 이는 12-24시간 침착반응에서 제조된 Fe-GAC의 Freundlich 등온흡착 모델의 분배계수(511.5-592.5 L/mg)와 유사한 값을 나타내었다. 이러한 연구결과는 향후 지하수를 활용하는 마을상수도 수처리시스템에서 Fe-GAC가 지하수의 비소를 제거하는 뛰어난 흡여재로 사용될 수 있음을 나타내는 것이다.

Keywords

Acknowledgement

Grant : 지하수 활용 마을상수도 수질모니터링 및 수처리 기술개발

References

  1. Bang, S., Korfiatis, G.P. and Meng, X. (2005) Removal of arsenic from water by zero-valent iron. J. Hazard. Mat., v.121, p.61-67. https://doi.org/10.1016/j.jhazmat.2005.01.030
  2. Chen, W., Parette, R., Zou, J., Cannon, F.S. and Dempsey, B.A. (2007) Arsenic removal by iron-modified activated carbon. Water Res., v.41, p.1851-1858. https://doi.org/10.1016/j.watres.2007.01.052
  3. EPA (2003) Arsenic treatment technology evaluation handbook for small systems. EPA 816-R-03-014.
  4. Fierro, V., Muniz, G., Gonzakez-Sanchez, G., Ballinas, M.L. and Celzard, A. (2009) Arsenic removal by irondoped activated carbons prepared by ferric chloride forced hydrolysis. J. Hazard. Mat., v.168, p.430-437. https://doi.org/10.1016/j.jhazmat.2009.02.055
  5. Gu, Z., Fang J. and Deng, B. (2005) Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Env. Sci. Technol., v.39, p.3833-3843. https://doi.org/10.1021/es048179r
  6. Ho, Y.S. and McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochem., v.34, p.451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  7. Jang, M., Chen, W. and Cannon, F.S. (2008) Preloading hydrous ferric oxide into granular activated carbon for Arsenic removal. Environ. Sci. Technol., v.42, p.3369-3374. https://doi.org/10.1021/es7025399
  8. Joshi, A. and Chaudhuri, M. (1996) Removal of arsenic from ground water by iron oxide-coated sand. J. Env. Eng., v.122(8), p.769-771. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:8(769)
  9. Kim, J.-Y., Choi, Y.-H,, Kim, K.-W., Ahn, J.-S. and Kim, D.- W. (2005) Removal of As(III) in contaminated groundwater using iron and manganese oxide -coated materials. Econ. Environ. Geol., v.38(5), p.571-577.
  10. Kim, Y.-T., Woo, N.-C., Yoon, H.-Y. and Yoon, C.-H. (2006) Distribution of organic the Ulsan mine. Econ. Environ. Geol., v.39(6), p.689-697.
  11. Kinniburgh, D.G. Jackson, M.L. and Syers, J.K. (1976) Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J. v.40, p.796-799. https://doi.org/10.2136/sssaj1976.03615995004000050047x
  12. Ko, I.-W., Lee, S.-W., Kim, J.-Y., Kim, K.-W. and Lee, C.- H. (2004) Removal of arsenite and arsenate by a sand coated with colloidal hematite particle. J. Kor. Soc. Soil & Groundwater Env., v.10(1), p.63-69.
  13. Kuan, W.H., Lo, S.L., Wang, M.K. and Lin, C.F. (1998) Removal of Se(IV) and from water by aluminumoxide- coated sand. Wat. Res., v.32(3), p.915-923. https://doi.org/10.1016/S0043-1354(97)00228-5
  14. Kundu, S. and Gupta, A.K. (2005) Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement(IOCC). J. Colloid. Interf. Sci., v.209, p.52-60.
  15. Mohan, D. and Pittman Jr., C.U. (2007) Arsenic removal from water/wastewater using adsorbents - A critical review. J. Hazard. Mater., v.142, p.1-53. https://doi.org/10.1016/j.jhazmat.2007.01.006
  16. Mondal, P., Mohanty, B. and Majumder, B. (2009) Removal of arsenic from simulated groundwater by GAC-Fe: a modeling approach. AIChE J., v.55(7), p.1860-1871. https://doi.org/10.1002/aic.11819
  17. Mondal. P., Majumder, C.B. and Mohanty, B. (2007) A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: Effects of shaking time, pH, and temperature. J. Hazard. Mater., v.144, p.420-426. https://doi.org/10.1016/j.jhazmat.2006.10.078
  18. Pal, T., Mukherjee, P.K., Sengupta. S., Bhattacharyya, A.K. and Shome, S. (2002) Arsenic pollution in groundwater of West Bengal, India-an insight into the problem by subsurface sediment analysis. Gondwana Res., v.5(2), p.501-512. https://doi.org/10.1016/S1342-937X(05)70738-3
  19. Simunek, J.M., van Genuchten, M.Th., Sejna, M., Toride, N. and Leij, F.J. (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0, IGWMC - TPS - 71, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 32pp.
  20. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters., Appl. Geochem., v.17 p.517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  21. Toride, N., Leij, F.J. and van Genuchten, M.Th. (1995) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.0, Research Report No. 137, U. S. Salinity Laboratory, USDA, ARS, Riverside, CA.
  22. Vaishya, R.C. and Gupta, S.K. (2004) Modeling Arsenic(V) removal from water by sulfate modified iron-oxide coated sand (SMIOCS). Separ. sci Tech. v.39(3) p.645-666.
  23. Westerhoff, P., Karanfil, T. and Crittenden, J. (2006) Aerogel & Iron-Oxide impregnated granular activated Carbon media for arsenic removal. AWWA Res. Found.
  24. Wieczorek-Ciurowa, K. and Kozak, A.J. (1999) The thermal decomposition of $Fe(NO_{3})_{3}$.$9H_{2}O$. J. Thermal Anal. Calorimetry, v.58, p.647-651. https://doi.org/10.1023/A:1010112814013
  25. Yean, S., Cong, L., Yavuz, C.T., Mayo, J.T., Yu, W.W., Kan, A.T., Colvin, V.L. and Tomson, M.B. (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate., J. Mater. Res., v.20(12), p.3255-3264. https://doi.org/10.1557/jmr.2005.0403
  26. Yu, M.-R., Hong, S.-C., Yang, J.-K. and Chang, Y.-Y. (2008) Removal of As(III) and Phenol by multi-functional property of activated carbon impregnated with manganese. J. Kor. Soc. Soil Groundwater Env., v.13(3), p.52-58.
  27. Zhang, Q.L., Lin, Y.C., Chen, X. and Gao, N.Y. (2007) A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. J. hazard. Mater. v.148, p.671-678. https://doi.org/10.1016/j.jhazmat.2007.03.026