The Bioleaching of Sphalerite by Moderately Thermophilic Bacteria

고온성 박테리아를 이용한 섬아연석의 용출 특성

  • Park, Cbeon-Young (Department of Energy and Resource Engineering, Chosun University) ;
  • Cheong, Kyung-Hoon (Department of Environmental Engineering and BK21 Team for Biohydrogen Production, Chosun University) ;
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University)
  • 박천영 (조선대학교 에너지자원공학과) ;
  • 정경훈 (조선대학교 환경공학과 BK21 바이오가스기반 수소생산사업팀) ;
  • 김봉주 (조선대학교 에너지자원공학과)
  • Received : 2010.09.07
  • Accepted : 2010.12.14
  • Published : 2010.12.28

Abstract

Bioleaching experiments were effectively carried out at $42^{\circ}C$, $52^{\circ}C$ and $62^{\circ}C$ to leach the more valuable metal ions from sphalerite using bacteria. The pH values of the bioleaching solution were constantly maintained for 10 days in the range of 2.40 to 2.55. In these bioleaching experiments, rod-shaped bacteria attached to the sphalerite surface were continuously observed in the sample. Along with the increase in the leaching temperatures, the concentration of Zn and Pb increased in the control sample of leachates, whereas the concentration of Fe increased in the sample containing bacteria. At $42^{\circ}C$, $52^{\circ}C$ and $62^{\circ}C$ the biological leaching content of Zn was found to be 9.5, 2.8 and 2.9 times higher than that in the chemical leaching content, respectively. At these temperatures, the content of Pb in the bacterial sample of the leachate was detected to be 14.8, 7.4 and 3.8 times higher than that of the control sample of the leachate, respectively.

고온성박테리아를 이용하여 섬아연석으로부터 유용금속이온을 효과적으로 용출시키기 위하여 $42^{\circ}C$, $52^{\circ}C$, $62^{\circ}C$에서 미생물용출실험을 각각 수행하였다. 이때 미생물용출실험이 진행되는 10일 동안, 용출액의 pH는 2.40에서 2.5 범위를 유지하였으며 미생물 용출실험이 종료될 때까지 막대 모양의 박테리아들이 섬아연석 표면에 부착되어 있는 것이 계속해서 관찰되었다. 용출온도를 $42^{\circ}C$, $52^{\circ}C$, $62^{\circ}C$로 증가시키면, 비교시료에서 용출 함량이 증가되는 금속은 Zn과 Pb이고, 박테리아 용출 시료에서는 Fe 용출 양이 증가하였다. 용출 온도를 $42^{\circ}C$, $52^{\circ}C$, $62^{\circ}C$로 증가시켰을 때, Zn 이온은 비교시료에서 보다 박테리아 용출 시료에서 각각 9.5배, 2.8배, 2.9배 이상으로 높게 용출되었고, Pb 이온은 비교시료에서 보다 박테리아 용출 시료에서 각각 14.8배, 7.4 배, 3.8배 이상으로 높게 용출되었다. Fe 이온의 비교시료에서 용출 온도를 $42^{\circ}C$, $52^{\circ}C$, $62^{\circ}C$로 증가시켜도 전혀 용출되지 않았지만, 박테리아 Fe 함량이 온도에 비례하여 증가하였다.

Keywords

Acknowledgement

Supported by : 조선대학교

References

  1. Ahonen, L. and Tuovinen, O.H. (1989) Microbiology oxidation of ferrous iron at low temperatures. Applied and Environmental Microbiology, v.55, p.312-316.
  2. Ahonen, L. and Tuovinen, O.H. (1990) Kinetics of sulfur oxidation at suboptimal temperature. Applied and Environmental Microbiology, v.56, p.560-562.
  3. Ahonen, L. and Tuovinen, O.H. (1992) Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures. Applied and Environmental Microbiology, v.58, p.600-606.
  4. Attia, Y.A. and El-Zeky, M. (1990) Effects of galvanic interactions of sulfides on extraction of percious metals from refractory complex sulfides by bioleaching. International Journal of Mineral Processing, v.30, p.99-111. https://doi.org/10.1016/0301-7516(90)90068-A
  5. Bennett, J.C. and Tributsch, H. (1978) Bacterial leaching patterns on pyrite crystal surfaces. Journal of Bacteriology, v.134, p.310-317.
  6. Berry, V.K. and Murr, L.E. (1978) Direct observations of bacteria and quantitative studies of their catalytic role in the leaching of low-grade, copper-bearing waste. In Murr, L.E., Torma, A.E. and Brierley, A.(ed.) Merallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic Press, New York, p.103-136.
  7. Bhatti, T.M., Bigham, J.M., Carlson, L. and Tuovinen, O.H. (1993) Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans. Applied and Environmental Microbiology, v.59, p.1984-1990.
  8. Blancarte-Zurita, M.A., Branion, R.M.R. and Lawrence, R.W. (1986) Application of a shrinking particle model to the kinetics of microbiological leaching. Fundamental and Applied Biohydrometallurgy: proceeding, International Symposium on Biohydrometallurgy, p.243-253.
  9. Bohlool, B.B. (1975) Occurrence of Sulfolobus acidocaldarius, an extremly thermophilic acidophilic bacterium, in New Zealand hot springs. Isolation and immunofluorescence characterization. Archives of Microbiology, v.106, p.171-174. https://doi.org/10.1007/BF00446520
  10. Boon, M., Snijder, M., Hansford, G.S. and Heijnen, J.J. (1998) The oxidation kinetics of zinc sulfide with Thiobacillus ferrooxidans, Hydrometallurgy, v.48, p.171-186. https://doi.org/10.1016/S0304-386X(97)00081-9
  11. Brierley, C.L. (1978a) Bacterial leaching. Critical Reviews in Microbiology, v.6, p.207-262. https://doi.org/10.3109/10408417809090623
  12. Brierley, C.L. (1982) Microbiological mining. Scientific American, v.247, p.42-51.
  13. Brierley, C.L. and Brierley, J.A. (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Canadian Journal of Microbiology, v.19, p.183-188. https://doi.org/10.1139/m73-028
  14. Brierley, J.A. (1978b) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Applied and Environmental Microbiology, v.36,p. 523-525.
  15. Brierley, J.A. (2003) Response of microbial systems to thermal stress in heap-biooxidation pretreatment of refractory gold ores. Hydrometallurgy, v.71, p.13-19. https://doi.org/10.1016/S0304-386X(03)00143-9
  16. Brierley, J.A. and Brierley, C.L. (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, v.59, p.233-239. https://doi.org/10.1016/S0304-386X(00)00162-6
  17. Brock, T.D. (1986) Introduction: an overview of the thermophiles, In Brock, T.D.(ed.) Thermophiles, John Wiley & Sons, p.1-16.
  18. Brock, T.D., Brock, K.M., Belly, R.T. and Weiss, R.L. (1972) Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archives of Microbiology, v.84, p.54-68. https://doi.org/10.1007/BF00408082
  19. Bruynesteyn, A. and Duncan, D.W. (1971) Microbiological leaching of sulfide concentrates. Canadian Metallurgical Quarterly, v.10, p.57-63. https://doi.org/10.1179/000844371795103251
  20. Chaudhury, G.R., Sukla, L.B. and Das, R.P. (1985) Kinetics of bio-chemical leaching of sphalerite concentrate. Metallurgical Transaction B, v.16B, p.667-670.
  21. da Silva, G., Lastra, M.R. and Budden, J.R. (2003) Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena. Mineral Engineering, v.16, p.199-203. https://doi.org/10.1016/S0892-6875(03)00010-4
  22. Flirmans, C.B. and Brock, T.D. (1972) Ecology of sulfuroxidizing bacteria in hot acid soils. Journal of. Bacteriology, v.111, p.343-350.
  23. Garcia, O. Jr., Bigham, J.M. and Tuovinen, O.H. (1995a) Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, v.41, p.578-584. https://doi.org/10.1139/m95-077
  24. Garcia, O.Jr., Bigham, J.M. and Tuovinen, O.H. (1995b) Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, v.41, p.508-514. https://doi.org/10.1139/m95-067
  25. Groudev, S.N. and Groudeva, V.I. (1993) Microbial communities in four industrial copper dump leaching operations in Bulgaria. FEMS Microbiology Reviews, v.11, p.261-268. https://doi.org/10.1111/j.1574-6976.1993.tb00293.x
  26. Jones, R.A., Koval, S.F. and Nesbitt, H.W. (2003) Surface alteration of arsenopyrite(FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, v.67, p.955-965. https://doi.org/10.1016/S0016-7037(02)00996-1
  27. Kim, D.J., Cho, K.S., Ahn, J.G., Park, K.H., Sohn, J.S. and Chung, H.S. (2003) Bioleaching of chalcopyrite concentrates by Thiobacillus ferrooxidans. Journal of the Korean Society for Geosystem Engineering, v.40, p.89-96. (in Korean)
  28. Ko, M.S., Park, H.S. and Lee, J.U. (2009) Bioleaching of heavy metals from tailings in abandoned Au-Ag mine using sulfur-oxidizing bacterium Acidithiobacillus thiooxidans. Journal of the Korean Society for Geosystem Engineering, v.46, p.239-251. (in Korean)
  29. Konhauser, K.O. (1998) Diversity of bacterial iron mineralization. Earth Science Reviews, v.43, p.91-121. https://doi.org/10.1016/S0012-8252(97)00036-6
  30. Konishi, Y., Kubo, H. and Asai, S. (1992) Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans. Biotechnology and Bioengineering, v.39, p.66-74. https://doi.org/10.1002/bit.260390111
  31. Lawrence, J.R., Kwong, Y.T.J. and Swerhone, G.D.W. (1997) Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can. J. Microbiol., v.43, p.178-188. https://doi.org/10.1139/m97-023
  32. Lizama, H.M. and Suzuki, I. (1990) Interaction of chalcopyrite and sphalerite with pyrite during leaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal Micobiology, v.37, p.304-311.
  33. Marsden, J. and House, I. (1992) The chemistry of gold extraction, Ellis Horwood, 597p.
  34. Martello, D.V., Vecchio, K.S., Diehl, J.R., Graham, R.A., Tamilia, J.P. and Pollack, S.S. (1994) Do dislocations and stacking faults increase the oxidation rate of pyrites?. Geochim Cosmochim Acta, v.58, p.4657-4665. https://doi.org/10.1016/0016-7037(94)90198-8
  35. Mehta, A.P. and Murr, L.E. (1982) Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of Thiobacillus ferrooxidans(${30^{\circ}C}$) and a thermophilic microogram (${55^{\circ}C}$). Biotechnology and Bioengineering, v.24, p.919-940. https://doi.org/10.1002/bit.260240413
  36. Mehta, A.P. and Murr, L.E., (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy, v.9, p.235-256. https://doi.org/10.1016/0304-386X(83)90025-7
  37. Murr, L.E. and Berry, V.K. (1976) Direct observations of selective attachment of bacteria on low-grade sulfide ores and other mineral surfaces. Hydrometallurgy, v.2, p.11-24. https://doi.org/10.1016/0304-386X(76)90010-4
  38. Nasernejad, B., Kaghazchi, T., Edrisi, M. and Sohrabi, M. (1999) Bioleaching of molybdenite from low-grade copper ore. Process Biochemistry, v.35, p.437-440. https://doi.org/10.1016/S0032-9592(99)00067-9
  39. Norris, P.R. (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In Ehrlich, H.L. and Brierley, C.L.(ed.) Microbial mineral recovery, McGraw-Hill Publishing Company, p.3-23.
  40. Norris, P.R., Marsh, R.M. and Linstrom, E.B. (1986) Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnology and Applied Biochemistry, v.8, p.318-329.
  41. Ohmura, N., Kitamura, K. and Saiki, H. (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Applied Environmental Microbiology, v.59, p.4044-4050.
  42. Olson, G.J. (1991) Rate of pyrite bioleaching by Thiobacillus ferrooxidans-results of an interlaboratory comparison. Applied and Environment Microbiology, v.1991, p.642-644.
  43. Park, C.Y. and Cho, K.H. (2010) The characteristics of attachment on pyrite surface and bioleaching by indigenous acidophilic bacteria. The Korean Society Geosystem Engineering, v.47, p.51-60. (in Korean)
  44. Park, C.Y., Cheong, K.H., Kim, K,M., Hong, Y.U. and Cho, K.H. (2009) Bioleaching of pyrite from the abandoned Hwasun coal mine drainage using indigenous acidophilic bacteria, The Korean Society Geosystem Engineering, v46, p.521-535. (in Korean)
  45. Park, C.Y., Kim, S.O. and Kim, B.J. (2010a) The characteristic of selective attachment and bioleaching for pyrite using indigenous acidophilic bacteria at ${42^{\circ}C}$. Economic and Environmental Geology, v.43, p.109-121. (in Korean)
  46. Pogliani, C., Curutchet, G., Donati, E. and Tedesco, P.H. (1990) A need for direct contact with particle surface in the bacterial oxidation of covellite in the absence of a chemical lixiviant. Biotechnology Letters, v.12, p.515-518. https://doi.org/10.1007/BF01086345
  47. Rodriguez, Y., Ballester, A., Blazquez, M.L., Gonzalez, F. and Munoz, J.A. (2003) New information on the sphalerite bioleaching mechanism at low and high temperature. Hydrometallurgy, v.71, p.57-66. https://doi.org/10.1016/S0304-386X(03)00174-9
  48. Rojas-Chapana, J.A. and Tributsch, H. (2004) Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite. FEMS Microbiology Ecology, v.47, p.19-29. https://doi.org/10.1016/S0168-6496(03)00221-6
  49. Santhiya, D., Subramanian, S. and Natarajan, K.A. (2000) Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation. Minerals Engineering, v.13, p.747-763. https://doi.org/10.1016/S0892-6875(00)00059-5
  50. Schippers, A. (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In Donati, E. R. and Sand, W.(ed.) Microbial processing of metal sulfides, Springer, p.3-33.
  51. Silverman, M.P. (1967) Mechanism of bacteria pyrite oxidation. Journal of Bacteriology, v.94, p.1046-1051.
  52. Solari, J.A., Huerta, G., Escobar, B., Vargas, T., Badilla- Ohlbaum, R. and Rubio, J. (1992) Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surface. Colloids and Surfaces, v.69, p.159-166. https://doi.org/10.1016/0166-6622(92)80227-S
  53. Torma, A.E. (1977) The role of Thiobacillus ferrooxidans in hydrometallurgical process. Adv. Biochem. Eng., v.6, p.1-37.
  54. Torma, A.E. and Guay, R. (1976) Effect of particle size on the biodegradation of a sphalerite concentrate. Naturaliste Can., v.103, p.133-138.
  55. Torma, A.E., Walden, C.C. and Branion, R.M.R. (1970) Microbiological leaching of a zinc sulfide concentrate. Biotechnology and Bioengineering, v.12, p.501-517. https://doi.org/10.1002/bit.260120403
  56. Tuovinen, O.H., Bhatti, T.M., Bigham, J.M., Hallberg, K.B., Garcia, Jr., O. and Lindstrom, E.B. (1994) Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. Applied and Environmental Microbiology, v.60, p.3268-3274.
  57. Yelloji Rao, M.K., Natarajan, K.A. and Somasundaran, P. (1992) Effect of biotreatment with Thiobacillus ferrooxidans on the floatability of sphalerite and galena. Mineral & Metallurgical Processing, v.9, p.95-100.