DOI QR코드

DOI QR Code

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater

  • Received : 2019.04.13
  • Accepted : 2020.10.08
  • Published : 2020.10.25

Abstract

Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.

Keywords

References

  1. Akyol, A., Can, O.T., Demirbas, E. and Kobya, M. (2013), "A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant", Sep. Purif. Technol., 112, 11-19. https://doi.org/10.1016/j.seppur.2013.03.036.
  2. Ali, I., Singh, P., Aboul-Enein, H.Y. and Sharma, B. (2009), "Chiral analysis of ibuprofen residues in water and sediment", Anal. Lett., 42, 1747-1760. https://doi.org/10.1080/00032710903060768.
  3. Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G. and Garcia, J. (2016), "Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials", Chem. Eng. J., 283, 936-947. https://doi.org/10.1016/j.cej.2015.08.023.
  4. Basu, S. and Barman, S. (2019), "Adsorptive removal of fipronil from its aqueous solution by modified zeolite HZSM-5: Equilibrium, kinetic and thermodynamic study", J. Mol. Liq., 283, 867-878. https://doi.org/10.1016/j.molliq.2019.02.140.
  5. Brillas, E., Sires, I. and Oturan, M.A. (2009), "Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry", Chem. Rev., 109, 6570-6631. https://doi.org/10.1021/cr900136g.
  6. Chen, L., Zhu, S.Y., Wang, Y.M. and He, M.Y. (2010), "One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template", New J. Chem., 34, 2328-2334. https://doi.org/10.1039/C0NJ00316F.
  7. Chopra, I. and Roberts, M. (2001), "Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance", Microbiol. Mol. Biol. Rev., 65, 232-260. https://doi.org/10.1128/MMBR.65.2.232-260.2001.
  8. Chu, W., Li, X., Zhu, X., Xie, S., Guo, C., Liu, S., Chen, F. and Xu, L. (2017), "Size-controlled synthesis of hierarchical ferrierite zeolite and its catalytic application in 1-butene skeletal isomerization", Microporous Mesoporous Mater., 240, 189-196. https://doi.org/10.1016/j.micromeso.2016.11.015.
  9. El-Desoky, H.S., Ghoneim, M.M., El-Sheikh, R. and Zidan, N.M. (2010), "Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent", J. Hazard. Mater., 175, 858-865. https://doi.org/10.1016/j.jhazmat.2009.10.089.
  10. El-Ghenymy, A., Garcia-Segura, S., Rodriguez, R.M., Brillas, E., El Begrani, M.S. and Abdelouahid, B.A. (2012), "Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology", J. Hazard. Mater., 221, 288-297. http://dx.doi.org/10.1016/j.jhazmat.2012.04.053.
  11. Eliopoulos, G.M., Eliopoulos, G.M. and Roberts, M.C. (2003), "Tetracycline therapy: update", Clin. Infect. Dis., 36, 462-467. https://doi.org/10.1086/367622.
  12. Freundlich, H. and Hatfield, H.S. (1926), Colloid and Capillary Chemistry, Methuen And Co. Ltd., London, UK. https://doi.org/10.1021/ed003p1454.2.
  13. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. and Su, X. (2012), "Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide", J. Colloid Interface Sci., 368, 540-546. https://doi.org/10.1016/j.jcis.2011.11.015.
  14. Ghadim, E.E., Manouchehri, F., Soleimani, G., Hosseini, H., Kimiagar, S. and Nafisi, S. (2013), "Adsorption properties of tetracycline onto graphene oxide: Equilibrium, kinetic and thermodynamic studies", PLoS One, 8, e79254. https://doi.org/10.1371/journal.pone.0079254.
  15. Gharibian, S., Hazrati, H. and Rostamizadeh, M. (2020), "Continuous electrooxidation of methylene blue in filter press electrochemical flowcell: CFD simulation and RTD validation", Chem. Eng. Process, 150, 107880. https://doi.org/10.1016/j.cep.2020.107880.
  16. Huang, L., Wang, M., Shi, C., Huang, J. and Zhang, B. (2014), "Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation", Desalin. Water Treat., 52, 2678-2687. https://doi.org/10.1080/19443994.2013.833873.
  17. Ifebajo, A.O., Oladipo, A.A. and Gazi, M. (2019), "Efficient removal of tetracycline by CoO/$CuFe_2O4$ derived from layered double hydroxides", Environ. Chem. Lett., 17, 487-494. https://doi.org/10.1007/s10311-018-0781-0.
  18. Kianfar, E., Salimi, M., Pirouzfar, V. and Koohestani, B. (2018), "Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline", Int. J. Appl. Ceram. Technol., 15, 734-741. https://doi.org/10.1111/ijac.12830.
  19. Kraft, A., Stadelmann, M. and Blaschke, M. (2003), "Anodic oxidation with doped diamond electrodes: A new advanced oxidation process", J. Hazard. Mater., 103, 247-261. https://doi.org/10.1016/j.jhazmat.2003.07.006.
  20. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  21. Liu, D., Zhang, H., Wei, Y., Liu, B., Lin, Y., Li, G. and Zhang, F. (2018), "Enhanced degradation of ibuprofen by heterogeneous electro-Fenton at circumneutral pH", Chemosphere, 209, 998-1006. https://doi.org/10.1016/j.chemosphere.2018.06.164.
  22. Mahboub, M.J.D., Rostamizadeh, M., Dubois, J.I. and Patience, G.S. (2016), "Partial oxidation of 2-methyl-1, 3-propanediol to methacrylic acid: Experimental and neural network modeling", RSC Adv., 6, 114123-114134. https://doi.org/10.1039/C6RA16605A.
  23. Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M. and Comninellis, C. (2003), "Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes", J. Electrochem. Soc., 150, 79-83. https://doi.org/10.1149/1.1553790.
  24. Martinez-Huitle, C.A. and Brillas, E. (2008), "Electrochemical alternatives for drinking water disinfection", Angew. Chem. Int. Ed., 47, 1998-2005. https://doi.org/10.1002/anie.200703621.
  25. Mohebbi, S., Rostamizadeh, M. and Kahforoushan, D. (2020), "Effect of molybdenum promoter on performance of high silica MoO3/B-ZSM-5 nanocatalyst in biodiesel production", Fuel, 266, 117063. https://doi.org/10.1016/j.fuel.2020.117063.
  26. Ozcan, A., Ozcan, A.A. and Demirci, Y. (2016), "Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment", Chem. Eng. J., 304, 518-526. https://doi.org/10.1016/j.cej.2016.06.105.
  27. Panizza, M. and Cerisola, G. (2009), "Direct and mediated anodic oxidation of organic pollutants", Chem. Rev., 109, 6541-6569. https://doi.org/10.1007/978-1-4419-6996-5_126.
  28. Puga, A., Rosales, E., Pazos, M. and Sanroman, M. (2020), "Prompt removal of antibiotic by adsorption/electro-Fenton degradation using an iron-doped perlite as heterogeneous catalyst", Process Saf. Environ. Prot., 144, 100-110. https://doi.org/10.1016/j.psep.2020.07.021.
  29. Rostamizadeh, M. and Rizi, S.M.H. (2012), "Predicting gas flux in silicalite-1 zeolite membrane using artificial neural networks", J. Membr. Sci., 403, 146-151. http://dx.doi.org/10.1016/j.memsci.2012.02.036.
  30. Rostamizadeh, M., Yaripour, F. and Hazrati, H. (2018a), "High efficient mesoporous HZSM-5 nanocatalyst development through desilication with mixed alkaline solution for methanol to olefin reaction", J. Porous Mater., 25, 1287-1299. https://doi.org/10.1007/s10934-017-0539-2.
  31. Rostamizadeh, M., Yaripour, F. and Hazrati, H. (2018b), "Selective production of light olefins from methanol over desilicated highly siliceous ZSM-5 nanocatalysts", Polyolefins J., 5, 59-70. https://doi.org/10.22063/poj.2017.1501.
  32. Rostamizadeh, M., Jalali, H., Naeimzadeh, F. and Gharibian, S. (2019), "Efficient removal of diclofenac from pharmaceutical wastewater using impregnated zeolite catalyst in heterogeneous Fenton process", Phys. Chem. Res., 7, 37-52. https://doi.org/10.22036/pcr.2018.144779.1524.
  33. Troster, I., Fryda, M., Herrmann, D., Schafer, L., Hanni, W., Perret, A., Blaschke, M., Kraft, A. and Stadelmann, M. (2002), "Electrochemical advanced oxidation process for water treatment using DiaChem(R) electrodes", Diamond Relat. Mater., 11, 640-645. https://doi.org/10.2166/wst.2004.0264.
  34. Vosoughi, M., Fatehifar, E., Derafshi, S. and Rostamizadeh, M. (2017), "High efficient treatment of the petrochemical phenolic effluent using spent catalyst: Experimental and optimization", J. Environ. Chem. Eng., 5, 2024-2031. https://doi.org/10.1016/j.jece.2017.04.003.
  35. Xue, Z., Wang, T., Chen, B., Malkoske, T., Yu, S. and Tang, Y. (2015), "Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method", Materials, 8, 6360-6378. https://doi.org/10.3390/ma8095310.
  36. Yahya, M.S., Oturan, N., El Kacemi, K., El Karbane, M., Aravindakumar, C. and Oturan, M.A. (2014), "Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: Kinetics and oxidation products", Chemosphere, 117, 447-454. https://doi.org/10.1016/j.chemosphere.2014.08.016.