• Title/Summary/Keyword: Ionic liquid.

Search Result 469, Processing Time 0.024 seconds

Effect of Monomers and Initiators on Electrochemical Properties of Gel Polymer Electrolytes (젤 고분자 전해질의 전기화학적 특성에 대한 단량체 및 개시제의 영향)

  • Park, Hyoun-Gyu;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Poly(ethyleneglycol diacrylate)(PEGDA) or 2-ethylhexyl acrylate(2EHA)-based gel polymer electrolytes(GPEs) which have a solid content in the range of 8~54 wt% were synthesized and their ionic conductivity and electrochemical properties were measured at room temperature. It was observed that the ionic conductivity over $1\times10^{-3}$ S/cm was obtained in a homogeneous PEGDA-based GPE with 21 wt% of solid content. However the electrochemical stability of the GPE was lower than that of a liquid electrolyte. The presence of AIBN initiator which can produce a N2 gas during polymerization process might be the reason of this low oxidation decomposition potential. As an alternative, benzoyl peroxide was used as an initiator and GPE with enhanced electrochemical stability was obtained. Finally, the formation of stable solid electrolyte interphase on a graphite anode was evidenced by cyclic voltammetry measurement.

Preparation of Hydrophilic-Hydrophobic Composites by A Concentrated Emulsion Polymerization Method and Their Permselectivity to Mixture of Water-Ethanol (고농축에멀션중합방법을 이용한 분리막제조와 선택적 흡수성 연구)

  • Park, Jun-Seo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.29-38
    • /
    • 1997
  • In the w/o concentrated emulsion, the volume fraction of the dispersed is greater than 0.74 and the hydrophilic liquid is dispersed in the hydrophobic liquid of the continuous phase. The emulsion has the same appearance and behaviour as a gel. The polarity of the hydrophilic liquids and hydrophobic liquids, the pH and the ionic strength of the hydrophilic liquid are found to be important factors in the stability at the polymerization temperature such as $50^{\circ}C$. The lower the polarity of the hydrophobic liquid and the higher the polarity of the hydrophilic liquid, the more stable the emulsion. Electron microscopy studies of the hydrophilic-hydrophobic polymer composites show that the particles of polyacrylamide, the dispersed phase, are separated by he network of the thin film of polystyrene, the continuous phase. This hydrophilic-hydrophobic polymer composites show higher permselectivity to water in the mixture of water-ethanol. The pervaporation experiment shows that the selectivity of the membrane ranges between 4-40 and increases with increasing enthanol concentration in the feed. The rate of permeation decreases with increasing ethanol concentration in the feed.

  • PDF

The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel (실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구)

  • Choi, Jae-Hyung;Park, Yong-Beom;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.

Extraction Behavior of Am(III) and Eu(III) From Nitric Acid Using Room Temperature Ionic Liquid (질산용액으로부터 이온성 액체를 이용한 Am(III)과 Eu(III)의 추출 거동)

  • Kim, Ik-Soo;Chung, Dong-Yong;Lee, Keun-Young;Lee, Eil-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.347-357
    • /
    • 2018
  • The applicability of room temperature ionic liquids (RTILs), 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([$C_nmim$] [$Tf_2N$]), was investigated for the extraction of Am(III) and Eu(III) from nitric acid using n-octyl(phenyl)-N,N-diisobutyl carbamoylmethyl phosphine oxide (CMPO) and tri-n-butylphosphate (TBP) as extractants. The distribution ratios of Am(III) and Eu(III) in CMPO-TBP/[$C_nmim$][$Tf_2N$] were measured as a function of various parameters such as the concentrations of nitric acid, CMPO, and TBP. The results were compared with those obtained in CMPO-TBP/n-dodecane (n-DD). With comparable concentrations of the extractants, the distribution ratios obtained with RTILs were much higher than those obtained with n-DD. It was observed that the extraction efficiency was less for Eu(III) than for Am(III). The extraction of Am(III) and Eu(III) decreased with increases in the feed acidity for all three RTILs. The results suggest that the extraction of Am(III) and Eu(III) by CMPO in RTILs from nitric acid proceeds through the cation-exchange mechanism. The distribution ratios of Am(III) and Eu(III) increased with increases in the concentration of CMPO for all three RTILs. A linear regression analysis of the extraction data resulted in a straight line with a slope of about 3, suggesting the involvement of 3 molecules of CMPO during the extraction process.

Nucleophilic Fluorination Reactions in Novel Reaction Media for $^{18}F$-Fluorine Labeling Method ($^{18}F$-플루오린 표지를 위한 신개념 반응용매에서 친핵성 불소화 반응)

  • Kim, Dong-Wook;Jeong, Hwan-Jeong;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.91-99
    • /
    • 2009
  • Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography(PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with $^{18}F$-fluorine. In this review we describe recent methods and novel trends for the introduction of $^{18}F$-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic $^{18}F$-fluorination of some halo- and mesyloxyalkanes to the corresponding $^{18}F$-fluoroalkanes with $^{18}F$-fluoride obtained from an $^{18}O(p,n)^{18}F$ reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for $^{18}F$-fluorine labeling. Ionic liquid method is rapid and particularly convenient because $^{18}F$-fluoride in $H_2O$ can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with $^{18}F$-fluorine for PETimaging, and it is illustrated by the synthesis of $^{18}F$-fluoride radiolabeled molecular imaging probes, such as $^{18}F$-FDG, $^{18}F$-FLT, $^{18}F$-FP-CIT, and $^{18}F$-FMISO, in high yield and purity and in shorter times compared to conventional syntheses.

Influence of pH and Ionic Strength on Treatment of Radioactive Boric Acid Wastes by Forward Osmosis Membrane (정삼투막에 의한 붕산함유 방사성 폐액 처리를 위한 pH 및 이온강도 영향)

  • Choi, Hye-Min;Hwang, Doo-Seong;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.193-198
    • /
    • 2013
  • In general, boron recovery of 40-90% could be achieved by Reverse Osmosis (RO) membranes in neutral pH condition. As an emerging technology, Forward Osmosis (FO) membrane has attracted growing interest in wastewater treatment and desalination. The objective of this study is to evaluate the possibility of the boron removal in radioactive liquid waste by FO. In this study, the performance of FO was investigated to remove boron in the simulated liquid waste as the factors such as pH, osmotic pressure, ionic strength of solution, etc. The pH of feed solution is a major operating parameter which strongly influences to the permeation of boron and more than 80% of boron content can be separated when conducted at pH values less than 7. The water flux is not influenced but the boron flux and permeation rate tends to decrease in the low salt concentration of 1,000 mg/L. The boron flux increases linearly, but the permeation ratio of reducing boron is nearly constant even with changes in the draw solution concentration.

Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces (마이크로-액체/액체 계면에서의 이온 이동 반응을 이용한 전기화학 센서 개발)

  • Kim, Hye Rim;Baek, Seung Hee;Jin, Hye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2013
  • Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.

RETINOL STABILIZATION BY PSEUDO-LIPOSOME AND LAMELLAR LIQUID CRYSTAL

  • Lee, Seung-Ji;Jo, Byoung-Kee;Lee, Young-Jin;Ryu, Chang-Suk;Kim, Beom-Jun;Suk, Chang-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.116-122
    • /
    • 1998
  • It is well known that all-trans-retinol is not only very unstable in heat, light, air, and water, but also skin-irritant despite a good anti-wrinkle effect. Therefore, it is very difficult to stabilize retinol and make the safe retinol containing cosmetics by using a certain concentration of retinol with real effect. In order to dissolve these problems and apply retinol for skin care cream, firstly retinol is to be encapsulated in the vesicle called Liposphere (pseudo-liposome) which is made by homogenizing under high pressure the mixtures of lecithin, retinol, caprylic/capric triglyceride, and hydroalcoholic solution ; and then this retinol containing Liposphere is to be intercalated in lamellar liquid crystal layer which is prepared by emulsifying in an optimal ratio the mixtures composed of non-ionic emulsifier (cetearyl glucoside, sorbitan stearate & sucrose cocoate etc), cetearyl alcohol, stearic acid, cholesterol, and ceramide. In addition, the stability of the retinol containing oil in water cream by adding the polymeric emulsifier such as acrylate /C10-30 alkyl alkylate crosspolymer is to be ensured even at 55 C. Retinol containing oil in water cream prepared through above procedure could be very stable at 45 C for at least 50 days. The structure identification of lamellar liquid crystal was determined using polarized light microscope and electron microscope Conclusively, we could make the very stable retinol containing oil in water cream by triple procedure, that is, encapsulation of retinol in Liposphere, intercalation of retinol in lamellar liquid crystal layer, and assurance of the high temperature stability of cream even at 55 C.

  • PDF

Evaluation of Radiological Effects on the Aptamers to Remove Ionic Radionuclides in the Liquid Radioactive Waste

  • Minhye Lee;Gilyong Cha;Dongki Kim;Miyong Yun;Daehyuk Jang;Sunyoung Lee;Song Hyun Kim;Hyuncheol Kim;Soonyoung Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Background: Aptamers are currently being used in various fields including medical treatments due to their characteristics of selectively binding to specific molecules. Due to their special characteristics, the aptamers are expected to be used to remove radionuclides from a large amount of liquid radioactive waste generated during the decommissioning of nuclear power plants. The radiological effects on the aptamers should be evaluated to ensure their integrity for the application of a radionuclide removal technique. Materials and Methods: In this study, Monte Carlo N-Particle transport code version 6 (MCNP6) and Monte Carlo damage simulation (MCDS) codes were employed to evaluate the radiological effects on the aptamers. MCNP6 was used to evaluate the secondary electron spectrum and the absorbed dose in a medium. MCDS was used to calculate the DNA damage by using the secondary electron spectrum and the absorbed dose. Binding experiments were conducted to indirectly verify the results derived by MCNP6 and MCDS calculations. Results and Discussion: Damage yields of about 5.00×10-4 were calculated for 100 bp aptamer due to the radiation dose of 1 Gy. In experiments with radioactive materials, the results that the removal rate of the radioactive 60Co by the aptamer is the same with the non-radioactive 59Co prove the accuracy of the previous DNA damage calculation. Conclusion: The evaluation results suggest that only very small fraction of significant number of the aptamers will be damaged by the radioactive materials in the liquid radioactive waste.

Electrochemical Characteristics of Polyurethane-based Polymer Electrolyte for Lithium Sulfur Battery (리튬 유황전지용 폴리우레탄 고분자 전해질의 전기화학적 특성)

  • Kim, Hyeong-Ju;Shin, Joon-Ho;Kim, Jong-Hwa;Kim, Ki-Won;Ann, Hyo-Jun;Ahn, Ju-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.47-51
    • /
    • 2002
  • Polyurethane was used as matrix for polymer electrolytes with liquid electrolyte consist of organic solvent as ethylene carbonate(EC), propylene carbonate(PC), and tetraethylene glycol dimethylether(TG) and 1M $LiCF_3SO_3$, which has high mechanical strength and porosity. Electrochemical properties fur polyurethane electrolytes with various liquid electrolytes were evaluated. The amount of immersed liquid electrolyte for TG with 1M $LiCF_3SO_3$ was increased to about $750\%$ by weight, and initial discharge capacity and cycle performance was better than others. Ionic conductivity for TG/EC(v/v,1:1) and PC/EC(v/v, 1:1) with 1M $LiCF_3SO_3$ was about $3.15\times10^{-3} S/cm, \;3.18\times10^{-3}S/cm$