DOI QR코드

DOI QR Code

Electrochemical Characteristics of Polyurethane-based Polymer Electrolyte for Lithium Sulfur Battery

리튬 유황전지용 폴리우레탄 고분자 전해질의 전기화학적 특성

  • Kim, Hyeong-Ju (Department of Metallurgical and Materials Enginering, Advanced Materials Research Center, Engineering Research Institute Gyeongsang National University) ;
  • Shin, Joon-Ho (Department of Metallurgical and Materials Enginering, Advanced Materials Research Center, Engineering Research Institute Gyeongsang National University) ;
  • Kim, Jong-Hwa (Department of Metallurgical and Materials Enginering, Advanced Materials Research Center, Engineering Research Institute Gyeongsang National University) ;
  • Kim, Ki-Won (Department of Metallurgical and Materials Enginering, Advanced Materials Research Center, Engineering Research Institute Gyeongsang National University) ;
  • Ann, Hyo-Jun (Department of Metallurgical and Materials Enginering, Advanced Materials Research Center, Engineering Research Institute Gyeongsang National University) ;
  • Ahn, Ju-Hyun (Department of Chemical Engineering Gyeongsang National University)
  • Published : 2002.05.01

Abstract

Polyurethane was used as matrix for polymer electrolytes with liquid electrolyte consist of organic solvent as ethylene carbonate(EC), propylene carbonate(PC), and tetraethylene glycol dimethylether(TG) and 1M $LiCF_3SO_3$, which has high mechanical strength and porosity. Electrochemical properties fur polyurethane electrolytes with various liquid electrolytes were evaluated. The amount of immersed liquid electrolyte for TG with 1M $LiCF_3SO_3$ was increased to about $750\%$ by weight, and initial discharge capacity and cycle performance was better than others. Ionic conductivity for TG/EC(v/v,1:1) and PC/EC(v/v, 1:1) with 1M $LiCF_3SO_3$ was about $3.15\times10^{-3} S/cm, \;3.18\times10^{-3}S/cm$

본 연구에서는 높은 인장강도와 탄성력을 가지는 다공성 폴리우레탄(polyurethane, PU)을 지지체(matrix)로 이용하고, 유기 전해액 ethylene carbonate(EC), propylene carbonate(PC), tetraethylene glycol dimethylether(TG)와 1M $LiCF_3SO_3$를 부피비 1:1 비율로 혼합하여 액체 전해액을 제조하였으며, 높은 이론용량을 가지는 Li/S전지에 적용하여 전기 화학적 특성을 조사하였다. 1M $LiCF_3SO_3$에 TG를 첨가할 경우 유기 전해액의 함침량이 약 $750\%$ 증가하였으며 방전용량$(1065mAh/g{\cdot}sulfur)$ 및 사이클 특성이 가장 우수하였다. 1M $LiCF_3SO_3$에 TG/EC(v/v,1:1) 및 PC/EC(v/v,1:1)를 첨가한 경우 이온 전도도는 각각 $3.15\times10^{-3}(S/cm)$$3.18\times10^{-3}(S/cm)$로 나타났다.

Keywords

References

  1. D. E. Fenton, J. M. Parker and P. V. Wright, J. Polymer, 14, 589 (1973)
  2. P. V. Whght, J. Brit. Polymer, 7, 319 (1975) https://doi.org/10.1002/pi.4980070505
  3. J. R MacCallum and C. A. Vmcent : Polymer Electrolyte Reviews, Elsevier Applied Science, New York, 1987 and 1989
  4. M. Watanbe, S. Nagano, L. Sanui and N. Ogata, J. Polymer 18, 809 (1986) https://doi.org/10.1295/polymj.18.809
  5. D. F auteux, J. Electmchem. Soc., 135, 2231 (1988) https://doi.org/10.1149/1.2096244
  6. B. K. Choi, Y. W. Kim, H. K. Shin, Electrochimica Acta 45, 1371-1374 (2000) https://doi.org/10.1016/S0013-4686(99)00345-X
  7. B. K. Choi, Y. W. Kim, H. K. Shin, Solid State Ionics 113-115, 123-127 (1998) https://doi.org/10.1016/S0167-2738(98)00282-3
  8. J. Y. Chemg, M. Z. A. Munshi, B. B. Owens and W. H. Smyrl, Solid State Ionics 28-30, 857 (1988) https://doi.org/10.1016/S0167-2738(88)80159-0
  9. I. E. Kelly, J. R. Owen and B. C. H. Steele, J. Power Sources 14, 13 (1985) https://doi.org/10.1016/0378-7753(85)88004-6
  10. M. Z. A. Munshi and B. B. Owens, Solid State Ionics 26, 41 (1988) https://doi.org/10.1016/0167-2738(88)90244-5
  11. F. Croce, F. Bonino, Scrosati, Phil. Mag. B59, 161 (1989)
  12. F. Capoano, F. Croce, B. Scrosati, J. Etectivchem. Soc. 138, 1918 (1991) https://doi.org/10.1149/1.2085900
  13. H.Y. Sun, H.-J. Sohn, 0. Yamamoto. Y. Takeda, N. Imanishi, J. Electmchem. Soc. 146, 1672 (1999) https://doi.org/10.1149/1.1391824
  14. P. Periasamy, K. Tatsumi, M. Shikano, T. Pujieda, Y. Saito, T. Sakai, M.. Mizuhata, A. Kajinami and S. Deki, Joumal of Power Sources, 88, 269-273 (2000) https://doi.org/10.1016/S0378-7753(99)00348-1
  15. Felix B. Dias, Lambertus Plomp and Jakobert B.J. Veldhuis, Journal of Power Sources, 88, 169-191 (2000) https://doi.org/10.1016/S0378-7753(99)00529-7
  16. M. Alamgi.ra and K M. Abrahama, Journal of Power Sources, 54, 40-45 (1995) https://doi.org/10.1016/0378-7753(94)02037-4
  17. S. A. Agnihotry, P. Pradeep and S. S. Sekhon Agnihotry, Electrochimica Acta, 44, 3121-3126 (1999) https://doi.org/10.1016/S0013-4686(99)00029-8