• Title/Summary/Keyword: Ion Size

Search Result 1,130, Processing Time 0.031 seconds

Electrochemical Properties of Spinel LiMn2O4 Prepared Through Different Synthesis Routes (스피넬형 양극활물질 LiMn2O4의 합성방법에 따른 전기화학적 특성 비교)

  • Lee, Ki-Soo;Bang, Hyun-Joo;Sun, Yang-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.48-51
    • /
    • 2007
  • In order to investigate the effects of particle size and specific surface area(BET area) of spinel powder, $LiMn_2O_4$ were synthesized using metal oxide precursor by co-precipitation method(CoP) and solid state reaction (SSR) .X-ray diffraction(XRD) patterns revealed that the both prepared powder has a well developed spinel structure with Fd3m space group. The $LiMn_2O_4$ prepared by co-precipitation showed spherical morphology with narrow size distribution. However, the $LiMn_2O_4$ prepared by solid state reaction showed relatively smaller particles with irregular shape. The measured BET areas of the powers are $0.8m^2g^{-1}$ (CoP) and $3.6m^2g^{-1}$(SSR). The electrochemical performance of the Prepared $LiMn_2O_4$ powders was evaluated using coin type cells(CR2032) at elevated temperature ($55^{\circ}C$). The $LiMn_2O_4$ prepared by co-precipitation showed the better cycling performance(82.3%capacity retention at $50^{th}$ cycle) than that of the $LiMn_2O_4$(68.3%) prepared by solid state reaction at elevated temperature.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

Manufacture and Application of anhydrous calcium sulfate from flue gas desulfurization gypsum (排煙脫黃石膏로부터 無水石膏 製造 및 適用 特性)

  • Hyun, Jong-Yeong;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.10-18
    • /
    • 2005
  • The manufacture property of anhydrous calcium sulfate (anhydrite Ⅱ) from flue gas desulfurization (FGD) gypsum discharged from domestic thermoelectric power plants to apply as an auxiliary material of cement and concrete by high temperature treatment were investigated. The FGD gypsum was completely converted to anhydrite Ⅱ at the temperature of 700$^{\circ}C$ and the retention time of 1 hr. In the phase transformation process, particle size was also changed. The chemical composition, particle size and heat property of anhydrite Ⅱ made from the FGD gypsum were similar to them of natural gypsum. In the leaching test of sulfate ion (SO$_4^{2-}$) at the temperature of 90$^{\circ}C$ and the retention time of 1 hr, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ that was sintered at 700$^{\circ}C$ for 1 hr was about 50 wt.% based on that of natural gypsum. In addition, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ by adding the slaked lime of 3 wt.% decreased about 70 wt.% comparing with that of natural gypsum. In the application test, the compressive strength of cement and concrete manufactured by using the anhydrite Ⅱ as an auxiliary material were similar or superior compared with them of cement and concrete done by natural gypsum as an auxiliary material.

A Study on the Cobalt and Lithium Recovery from the Production Scraps of Lithium Secondary Battery by High Efficient and Eco-friendly Method (이차전지(二次電池) 제조공정(製造工程)스크랩으로부터 고효율(高效率) 親環境(친환경) 코발트(Co)와 리튬(Li)의 회수(回收)에 관(關)한 연구(硏究))

  • Lee, Jeong-Joo;Chung, Jin-Do
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.51-60
    • /
    • 2010
  • A study on the recovery of cobalt and lithium from Lithium Ion Battery(LIB) scraps has been carried out by a physical treatment - leaching - solvent extraction process. The cathode scraps of LIB in production were used as a material of this experiment. The best condition for recovering cobalt from the anode scraps was acquired in each process. The cathode scraps are dissolved in 2M sulfuric acid solution with hydrogen peroxide at $95^{\circ}C$, 700 rpm. The cobalt is concentrated from the leaching solution by means of a solvent extraction circuit with bis(2-ethylhexyl) phosphoric acid(D2EHPA) and PC88A in kerosene, and then cobalt and lithium are recovered as cobalt hydroxide and lithium carbonate by precipitation technology. The purity of cobalt oxide powder was over 99.98% and the average particle size after milling was about 10 lim. The over all recoveries are over 95% for cobalt and lithium. The pilot test of mechanical separation was carried out for the recovery of cobalt from the scraps. The $Co_3O_4$ powder was made by the heat treatment of $Co(OH)_2$ and the average particle size was about 10 ${\mu}m$ after grinding. The recovery was over 99% for cobalt and lithium each other and the purity of cobalt oxide was over 99.98%.

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials (기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.861-867
    • /
    • 2019
  • $Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications (전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극)

  • Han, Jae Hee;Suh, Dong Hack;Kim, Tae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.759-764
    • /
    • 2018
  • 3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.

Development of a Centrifugal Microreactor for the Generation of Multicompartment Alginate Hydrogel (다중 알긴산 입자제조를 위한 원심력 기반 미세유체 반응기 개발)

  • Ju-Eon, Jung;Kang, Song;Sung-Min, Kang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • Microfluidic reactors have been made to achieve significant development for the generation of new functional materials to apply in a variety of fields. Over the last decade, microfluidic reactors have attracted attention as a user-friendly approach that is enabled to control physicochemical parameters such as size, shape, composition, and surface property. Here, we develop a centrifugal microfluidic reactor that can control the flow of fluid based on centrifugal force and generate multifunctional particles of various sizes and compositions. A centrifugal microfluidic reactor is fabricated by combining microneedles, micro- centrifuge tubes, and conical tubes, which are easily obtained in the laboratory. Depending on the experimental control param- eters, including centrifuge rotation speed, alginate concentration, calcium ion concentration, and distance from the needle to the calcium aqueous solution, this strategy not only enables the generation of size-controlled microparticles in a simple and reproducible manner but also achieves scalable production without the use of complicated skills or advanced equipment. Therefore, we believe that this simple strategy could serve as an on-demand platform for a wide range of industrial and academic applications, particularly for the development of advanced smart materials with new functionalities in biomedical engineering.

The evaluation for the usability ofthe Varian Standard Couch modelingusing Treatment Planning System (치료계획 시스템을 이용한 Varian Standard Couch 모델링의 유용성 평가)

  • Yang, yong mo;Song, yong min;Kim, jin man;Choi, ji min;Choi, byeung gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2016
  • Purpose : When a radiation treatment, there is an attenuation by Carbon Fiber Couch. In this study, we tried to evaluate the usability of the Varian Standard Couch(VSC) by modeling with Treatment Planning System (TPS) Materials and Methods : VSC was scanned by CBCT(Cone Beam Computed Tomography) of the Linac(Clinac IX, VARIAN, USA), following the three conditions of VSC, Side Rail OutGrid(SROG), Side Rail InGrid(SRIG), Side Rail In OutSpine Down Bar(SRIOS). After scan, the data was transferred to TPS and modeled by contouring Side Rail, Side Bar Upper, Side Bar Lower, Spine Down Bar automatically. We scanned the Cheese Phantom(Middelton, USA) using Computed Tomography(Light Speed RT 16, GE, USA) and transfer the data to TPS, and apply VSC modeled previously with TPS to it. Dose was measured at the isocenter of Ion Chamber(A1SL, Standard imaging, USA) in Cheese Phantom using 4 and 10 MV radiation for every $5^{\circ}$ gantry angle in a different filed size($3{\times}3cm^2$, $10{\times}10cm^2$) without any change of MU(=100), and then we compared the calculated dose and measured dose. Also we included dose at the $127^{\circ}$ in SRIG to compare the attenuation by Side Bar Upper. Results : The density of VSC by CBCT in TPS was $0.9g/cm^3$, and in the case of Spine Down Bar, it was $0.7g/cm^3$. The radiation was attenuated by 17.49%, 16.49%, 8.54%, and 7.59% at the Side Rail, Side Bar Upper, Side Bar Lower, and Spine Down Bar. For the accuracy of modeling, calculated dose and measured dose were compared. The average error was 1.13% and the maximum error was 1.98% at the $170^{\circ}beam$ crossing the Spine Down Bar. Conclusion : To evaluate the usability for the VSC modeled by TPS, the maximum error was 1.98% as a result of compassion between calculated dose and measured dose. We found out that VSC modeling helped expect the dose, so we think that it will be helpful for the more accurate treatment.

  • PDF

Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge (가상쐐기와 기존쐐기의 물리적 특성 비교)

  • Choi Dong-Rak;Shin Kyung Hwan;Lee Kyu Chan;Kim Dae Yong;Ahn Yong Chan;Lim Do Hoon;Kim Moon Kyun;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.78-83
    • /
    • 1999
  • Purpose : We have compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. Materials and Methods : We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60$^{\circ}$) using 6- and 15MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a 15cm${\times}$20cm radiation field size at the depth of loom. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was 15cm H20cm and a polystyrene phantom was used. Results : For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%) , respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5$^{\circ}$ . Suface dose with physical wedge was reduced by maximum 20% (x-ray beam :6 MV, wedge angle:45$^{\circ}$, 550: 80 cm) relative to one with virtual wedge or without wedge. Conclusions : Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using physical wedge.

  • PDF