• Title/Summary/Keyword: Ion Etching

Search Result 731, Processing Time 0.023 seconds

Etching Characteristics of Er-doped Sodium Borosilicate Glass Film Fabricated by Aerosol Flame Deposition Method (Aerosol Flame Deposition 법에 의해 제조된 Er 첨가 Soldium Borosilicate 유리박막의 식각 특성에 관한 연구)

  • 박강희;정형곤;이정우;이형종;박현수;문종하
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.946-953
    • /
    • 1999
  • The etching characteristics of Er-doped sodium borosilicate glass film for the planar optical waveguides were investigated using reactive ion etching. The etch rate decreased as the pressure in creased but increased as the RF power increased. The etch rate increased as the flow rate C2F gas and the amount of O2 addition increased but decreased over critical point (C2F6 7,5 accm O2 20%) The etch rate was 180${\AA}$/min under C2F6 7.5 sccm O2 20% RF power 270 W, pressure 150 mTorr. With this optimum etching condition and subsequent heat treatment at 975$^{\circ}C$ for 30 minutes planar optical waveguides having improved sidewall roughness were fabricated successfully.

  • PDF

Effect of Surface etching on Magnetoresistance of GMR Multilayer (GMR 다층박막에서 표면 에칭에 따른 자기저항변화 효과)

  • Lee, T.H.;Lee, Y.W.;Yoon, S.M.;Kim, C.G.;Kim, C.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.72-75
    • /
    • 2002
  • Magnetoresistance (MR) of mumetal/Co/Co/Co multilayer is measured as a function of surface etching on the top Co layer by ion beam etching system. As the etching process proceeds, Co thickness and roughness decreases. MR is dominantly affected by Co layer thickness, but surface roughness makes no significant effect on the MR of mumetal/Co/Cu/Co multilayer.

  • PDF

Reactive Ion Etching of a-Si for high yield and low process cost

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper, amorphous semiconductor and insulator thin film are etched using reactive ion etcher. At that time, we experiment in various RIE conditions (chamber pressure, gas flow rate, rf power, temperature) that have effects on quality of thin film. The using gases are $CF_4,\;CF_4+O_2,\;CCl_2F_2,\;CHF_3$ gases. The etching of a-Si:H thin film use $CF_4,\;CF_4+O_2$ gases and the etching of $a-SiO_2,\;a-SiN_x$ thin film use $CCl_2F_2,\;CHF_3$ gases. The $CCl_2F_2$ gas is particularly excellent because the selectivity of between a-Si:H thin film and $a-SiN_x$ thin film is 6:1. We made precise condition on dry etching with uniformity of 5%. If this dry etching condition is used, that process can acquire high yield and can cut down process cost.

Influence of Ion Beam Etching on Silicon Schottky Barriers (실리콘 숏키장벽의 이온선 에칭의 영향)

  • Wang, Jin-Suk
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.2
    • /
    • pp.62-66
    • /
    • 1986
  • Ion beam etching of silicon with N2 and Ar gas has been found to cause the band edge to bend downward near the surface in p-type silicon. Rectifying, rather than ohmic contacts are obtained on the structures formed by evaporation of gold and titanium onto ion-bean-etched p-type silicon. The 1/C2 versus V relationship measured at 1MHz is found to be nonlinear for small voltages indicating alteration of the effective doping colse to the silicon surface.

  • PDF

Investigation of Ge2Sb2Te5 Etching Damage by Halogen Plasmas (할로겐 플라즈마에 의한 Ge2Sb2Te5 식각 데미지 연구)

  • Jang, Yun Chang;Yoo, Chan Young;Ryu, Sangwon;Kwon, Ji Won;Kim, Gon Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2019
  • Effect of Ge2Sb2Te5 (GST) chalcogen composition on plasma induced damage was investigated by using Ar ions and F radicals. Experiments were carried out with three different modes; the physical etching, the chemical etching, and the ion-enhanced chemical etching mode. For the physical etching by Ar ions, the sputtering yield was obtained according to ion bombarding energy and there was no change in GST composition ratio. In the plasma mode, the lowest etch rate was measured at the same applied power and there was also no plasma induced damage. In the ion-enhanced chemical etching conditions irradiated with high energy ions and F halogen radicals, the GST composition ratio was changed according to the density of F radicals, resulting in higher roughness of the etched surface. The change of GST composition ratio in halogen plasma is caused by the volatility difference of GST-halogen compounds with high energy ions over than the activation energy of surface reactions.

Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (구리이온을 함유한 PCB 폐에칭액의 Cross-flow 나노여과)

  • Park, Hye-Ri;Nam, Sang-Won;Youm, Kyung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.272-277
    • /
    • 2014
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a cross-flow membrane filtration laboratory system. The permeate flux was decreased with the increasing copper ion concentration in sulfuric acid solution and lowering pH of acid solution, and its value was the range of $4.5{\sim}23L/m^2{\cdot}h$. Total rejection of copper ion was decreased with the increasing copper ion concentration, lowering pH of acid solution and decreasing cross-flow rate. The total rejection of copper ion was more than 70% at the experimental condition. The SelRO MPS-34 4040 NF membrane was represented the stable flux and rejection for 1 year operation.

The Etching of $HfO_2$ Thin Film as the ion Energy Distributions in the $BCl_3/Ar$ Inductively Coupled Plasma System ($BCl_3/Ar$ 유도 결합 플라즈마 시스템에서 이온 에너지 분포에 따른 $HfO_2$ 박막의 식각)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kang, Chan-Min;Kim, Chang-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.349-354
    • /
    • 2007
  • In this work, we investigated etching characteristics of $HfO_2$ thin film and Si using inductive coupled plasma(ICP) system. The ion energy distribution functions in an ICP system was analyzed by quadrupole mass spectrometer(QMS) with an electrostatic ion energy analyzer. The maximum etch rate of $HfO_2$ thin film is 85.5 nm/min at a $BCl_3/(BCl_3+Ar)$ of 20 % and decreased with further addition of $BCl_3$ gas. From the QMS measurements, the most dominant positive ion energy distributions(IEDS) showed a maximum at 20 % of $BCl_3$. These tendency was very similar to the etch characteristics. This result agreed with the universal energy dependency of ion enhanced chemical etching yields. And the maximum selectivity of $HfO_2$ over Si is 3.05 at a $O_2$ addition of 2 sccm into the $BCl_3/(BCl_3+Ar)$ of 20 % plasma.

The etching of $HfO_2$ thin film as the ion energy distributions in the $BCl_3/Ar$ inductively coupled plasma system ($BCl_3/Ar$ 유도 결합 플라즈마 시스템해서 이온 에너지 분포에 따른$HfO_2$ 박막 식각)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Kyu;Woo, Jong-Chang;Kang, Chan-Min;Kim, Chang-II
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.117-118
    • /
    • 2006
  • In this work, we investigated etching characteristics of $HfO_2$ thin film and Si using inductive coupled plasma (ICP) system. The ion energy distribution functions in an inductively coupled plasma was analyzed by quadrupole mass spectrometer with an electrostatic ion energy analyzer. The maximum etch rate of $HfO_2$ is 85.5 nm/min at a $BCl_3/(BCl_3+Ar)$ of 20% and decreased with further addition of $BCl_3$ gas. From the QMS measurements, the most dominant positive ion energy distributions (IEDs) showed a maximum at 20 % of $BCl_3$. These tendency was very similar to the etch characteristics. This result agreed with the universal energy dependency of ion enhanced chemical etching yields. And the maximum selectivity of $HfO_2$ over Si is 3.05 at a O2 addition of 2 sccm into the $BCl_3/(BCl_3+ Ar)$ of 20% plasma.

  • PDF

Analysis of single/poly crystalline Si etching characteristics using $Ar^+$ ion laser ($Ar^+$ ion laser를 이용한 단결정/다결정 Si 식각 특성 분석)

  • Lee, Hyun-Ki;Park, Jung-Ho;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1001-1003
    • /
    • 1998
  • In this paper, $Ar^+$ ion laser etching process of single/poly crystalline silicon with $CCl_{2}F_{2}$ gas is studied for MEMS applications. To investigate the effects of process parameters, laser power, gas pressure, scanning speed were varied and multiple scanning was carried out to obtain high aspect ratio. In addition, scanning width was varied to observe the trench profile etched in repeating scanning cycle. From the etching of $2.6{\mu}m$ thick polycrystalline Si deposited on insulator, trench with flat bottom and vertical side wall was obtained and it is possible to apply this results for MEMS applications.

  • PDF

Fabrication of Movable Nanostructures by Selective Etching of Nanoplates (나노판의 선택적 식각에 의한 이동이 가능한 나노구조체 제작)

  • Yun Yong-Ju;Ah Chil-Seong;Yun Wan-Soo;Ha Dong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.328-333
    • /
    • 2006
  • Movable nanometer-scale structures are fabricated by selective etching of single crystalline Au nanoplates. The nanostructures have arbitrary shapes like gear and alphabet 'A' with in-plane size less than 500 m and thickness of $25\sim60nm$. They could be moved successfully on the substrate using a nanornanipulator installed in a focused ion beam system. Our approach is expected to be useful in fabricating various kinds of nanocomponents which can play a role as building blocks for the sophisticated nanodevices or micromachines.