• Title/Summary/Keyword: Iodide ions

Search Result 47, Processing Time 0.019 seconds

Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media (Azadirachta Indica엑스와 요드화이온이 산성매체에서 Al 부식방지에 대한 Synergistic 효과)

  • Arab, S.T.;Al-Turkustani, A.M.;Al-Dhahiri, R.H.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%.The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter Sq is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions.

The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid

  • Kwon, Hyejin;Kim, Kuk Ki;Song, Jae Kyu;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.865-870
    • /
    • 2014
  • Gold nanoparticles (AuNPs) were synthesized by laser (Nd:YAG, ${\lambda}$ = 1064 nm) ablation of a gold target immersed in various aqueous electrolyte solutions (7 mM of LiCl, NaCl, KCl, NaBr, and NaI) as well as in deionized water. The surface plasmon absorption and EDX of AuNPs so produced as well as their TEM images were analyzed to investigate the effects of ambient ions on the growth and aggregation of NPs. The size of AuNPs was reduced by laser ablation in the presence of chloride and bromide ions while it increased drastically when AuNPs were formed in iodide solution. Interestingly, triangular nanoplates were synthesized only in iodide solution. Surface chemistry on AuNPs in various electrolyte solutions was explored to elucidate the role of ions on the size and stability of AuNPs.

Sorption characteristics of iodide on chalcocite and mackinawite under pH variations in alkaline conditions

  • Park, Chung-Kyun;Park, Tae-Jin;Lee, Seung-Yeop;Lee, Jae-Kwang
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1041-1046
    • /
    • 2019
  • In terms of long-term safety for radioactive waste disposal, the anionic iodide (I-129) with a long half-life ($1.6{\times}10^6yr$) is of a critical importance because this radionuclide migrates in geological media with limited interactions. Various studies have been performed to retard the iodide migration. Recently, some minerals that are likely generated from waste container corrosion, have been suggested to have a considerable chemical interaction with iodide. In this study, chalcocite and mackinawite were selected as candidate minerals for underground corrosion materials, and an iodide sorption experiment were carried out. The experiment was performed under anoxic and alkaline conditions and the pH effects on the iodide sorption were investigated in the range of pH 8 to 12. The results showed that both minerals demonstrated a noticeable sorption capacity on iodide, and the distribution coefficient ($K_d$) decreased as the pH increased in the experimental condition. In addition, when the alkalinity increased higher than a pH of 12, the sorption capacity of both minerals decreased dramatically, likely due to the competition of hydroxy ions with the iodide. This result confirmed that chalcocite was an especially good sorbing media for iodide under alkaline conditions with a pH value of less than 12.

Interaction of Water with Silver Iodide (AgI 결정면에 물의 흡착에 관한 이론적 고찰)

  • 백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1974
  • The interaction energy of water molecule over the surfaces of basal planes of silver iodide has been calculated , assuming 1-4-6--12 type potentials between the gas molecule and lattice ions in the silver iodide lattice. The heat of adsorption ranges from 12.25 to 12.75 kcal /mole at low coverage which is around the level of the latent heat of sublimaton of water.

  • PDF

Study on PVC Mixed Silver Iodide Membrane Electrode (PVC 를 섞은 요오드화은 막전극에 관한 연구)

  • Kwon Young-Soon;Kim Jung-Hee;Park Kee-Chae
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.486-493
    • /
    • 1976
  • The PVC mixed silver iodide pellet was prepared by means of the Infrared Pellet presser and the pellet was used as an indicating membrane electrode, to measure the potentials for various silver ion activities, ranging from $10^{-1}$ to $10^{-6}$ M. The potential responses to silver ion activities were linear and the slope was much close to Nernstian relation as compared with that of the pure silver iodide pellet membrane electrode and the PVC coated silver iodide pellet membrane electrode. The mechanical property and chemical durability of this electrode were found much better than the others. This electrode did not show significant response to the other except silver ion, but had good response to halide ions, i.e., iodide, chloride, bromide and cyanide ions, in the concentration range $10^{-1}$ to $10^{-6}$ M. This electrode could be used as an indicating electrode in potentiometric titrations of single halide ion and also halide mixture with standard solution of silver nitrate.

  • PDF

NON DESTRUCTIVE APPLICATION OF RADIOACTIVE TRACER TECHNIQUE FOR CHARACTERIZATION OF INDUSTRIAL GRADE ANION EXCHANGE RESINS INDION GS-300 AND INDION-860

  • Singare, P.U.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, $^{131}I$ and $^{82}Br$ were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate ($min^{-1}$), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log $K_d$ were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of $40.0^{\circ}C$, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

Halogen Exchange Reactions of Cinnamyl Halides

  • Lee, Bon-Su;Lee, Ikchoon
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.87-90
    • /
    • 1969
  • Halogen exchange reactions of trans-cinnnamyl chloride and bromide with radioactive chloride, bromide and iodide ions in acetone have teen studied. Relative nucleophilicity of halide ions and relative leaving ability have been discussed invoking the principle of HSAB.

  • PDF

A Study of the Ionic Association of the Substituted N-Methyl Pyridinium Iodides (I). N-Methyl Pyridinium Iodide in Ethanol-Water Mixture

  • Jee, Jong-Gi;Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 1984
  • The ionic association constant (K) of N-methyl pyridinium iodide (NMPI) ion in several ethanol-water mixtures were determined by the combination of UV spectroscopy and conductance measurements using the Shedlovsky function as a correction factor. The measurement of electrical conductance and UV absorption were performed in 95, 90, 80 and 60 volume percentages of ethanol in the solvent mixture at 15, 25, 35 and 45 $({\pm}0.1)^{\circ}C$. The ion size parameter $(r_A+_D-)$ and the dipole moment $({\mu}_A+_D-)$ of NMPI ion were obtained from he linear plots of ln K vs. (1/D) and (D-1)/(2D+1), respectively. These ${\mu}_A+_D-$ values were in good agreement with the values of transition moment calculated from the equation, ${\mu}_{nm}=6.5168{\times}10^{-2}{\times}({\varepsilon}_{max}{\frac{\bar{\nu}_{\frac{1}{2}}}{\bar{\nu}_{max}})^{\frac{1}{2}}$ (Debye) which we have derived. The thermodynamic parameters indicate (1) that the water dipoles have an ordered rearrangement around the dipolar NMPI ions rather than the configuration existing in bulk free waters; and (2) that the equilibrium state between NMPI ion and its component ions are controlled by entropy.

Molecular Dynamics Study on the Structural Phase Transition of Crystalline Silver Iodide

  • Jun Sik Lee;Mee Kyung Song;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.490-494
    • /
    • 1991
  • The ${\beta} to {\alpha}$ phase transition in silver iodide is studied with the (N, V, E) and (N, P, T) molecular dynamics (MD) method. In experiments, the phase transition temperature is 420 K. Upon heating of ${\beta}$ form, the iodine ions undergo hcp to bcc transformation and silver ions become mobile. MD simulations for the ${\beta}$ and ${\alpha}$ phases are carried out at several temperatures and the radial distribution functions (rdf) are obtained at those temperatures in the (N, V, E) ensemble. But the phase transition is not found in our calculation. Next the phase transition is studied with the (N, P, T) MD and we find some evidences of phase transition. At 3 Kbars and 2 Kbars the phase transition temperatu re is about 300 K. For 3.55 Kbars, the phase transition is higher (420 K) than the low pressure case. The phase transition temperature is somewhat dependent on the pressure in our calculations.

Synthesis and Crystal Structure of Lead Iodide in the Sodalite Cavities of Zeolite A (LTA)

  • Kim, Seok-Han;Lim, Woo-Taik;Kim, Ghyung-Hwa;Lee, Heung-Soo;Heo, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.679-686
    • /
    • 2006
  • The positions of $PbI _2$ molecule synthesized into the molecular-dimensioned cavities of $\mid K_6 (Pb _4I_2)(PbI_2) _{0.67}-(H_2O)_2\mid [Si _{12}Al _{12}O _{48}]$-LTA have been determined. A single crystal of $\mid Pb _6\mid [Si _{12}Al _{12}O _{48}]$-LTA, prepared by the dynamic ion-exchange of $\mid Na _{12}\mid [Si _{12}Al _{12}O _{48}]$-LTA with aqueous 0.05 M $Pb _(NO _3)_2$ and washed with deionized water, was placed in a stream of flowing aqueous 0.05 M KI at 294 K for three days. The resulting crystal structure of the product $( \mid K_6 (Pb _4I_2)(PbI_2) _{0.67}(H_2O)_2\mid [Si _{12}Al _{12}O _{48}]$-LTA, a = 12.353(1) $\AA$) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm3 m. It was refined with all measured reflections to the final error index $R_1$ = 0.062 for 623 reflections which $F_o$ > 4$\sigma$($F_o$). 4.67 $Pb ^{2+}$ and six $K^+$ ions per unit cell are found at three crystallographically distinct positions: 3.67 $Pb ^{2+}$ and three $K^+$ ions on the 3-fold axes opposite six-rings in the large cavity, three $K^+$ ions off the plane of the eight-rings, and the remaining one $Pb ^{2+}$ ion lies opposite four-ring in the large cavity. 0.67 $Pb ^{2+}$ ions and 1.34 $I^-$ ions per unit cell are found in the sodalite units, indicating the formation of a $PbI _2$ molecule in 67% of the sodalite units. Each $PbI _2$ (Pb-I = 3.392(7) $\AA$) is held in place by the coordination of its one $Pb ^{2+}$ ion to the zeolite framework (a $Pb ^{2+}$ cation is 0.74 $\AA$ from a six-ring oxygens) and by the coordination of its two $I^-$ ions to $K^+$ ions through six-rings (I-K = 3.63(4) $\AA$). Two additional $I^-$ ions per unit cell are found opposite a four-ring in the large cavity and form $Pb _2K_2I^{5+}$ and $Pb _2K_2I^{3+}$ moieties, respectively, and two water molecules per unit cell are also found on the 3-fold axes in the large cavity.