• Title/Summary/Keyword: IoT-Monitoring

Search Result 479, Processing Time 0.026 seconds

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Analysis of Emerging Geo-technologies and Markets Focusing on Digital Twin and Environmental Monitoring in Response to Digital and Green New Deal (디지털 트윈, 환경 모니터링 등 디지털·그린 뉴딜 정책 관련 지질자원 유망기술·시장 분석)

  • Ahn, Eun-Young;Lee, Jaewook;Bae, Junhee;Kim, Jung-Min
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.609-617
    • /
    • 2020
  • After introducing the industry 4.0 policy, Korean government announced 'Digital New Deal' and 'Green New Deal' as 'Korean New Deal' in 2020. We analyzed Korea Institute of Geoscience and Mineral Resources (KIGAM)'s research projects related to that policy and conducted markets analysis focused on Digital Twin and environmental monitoring technologies. Regarding 'Data Dam' policy, we suggested the digital geo-contents with Augmented Reality (AR) & Virtual Reality (VR) and the public geo-data collection & sharing system. It is necessary to expand and support the smart mining and digital oil fields research for '5th generation mobile communication (5G) and artificial intelligence (AI) convergence into all industries' policy. Korean government is suggesting downtown 3D maps for 'Digital Twin' policy. KIGAM can provide 3D geological maps and Internet of Things (IoT) systems for social overhead capital (SOC) management. 'Green New Deal' proposed developing technologies for green industries including resource circulation, Carbon Capture Utilization and Storage (CCUS), and electric & hydrogen vehicles. KIGAM has carried out related research projects and currently conducts research on domestic energy storage minerals. Oil and gas industries are presented as representative applications of digital twin. Many progress is made in mining automation and digital mapping and Digital Twin Earth (DTE) is a emerging research subject. The emerging research subjects are deeply related to data analysis, simulation, AI, and the IoT, therefore KIGAM should collaborate with sensors and computing software & system companies.

Internet of Things for in Home Health based Monitoring System: Modern Advances, Challenges and Future Directions

  • Omer Iqbal;Tayyeba Iftakhar;Saleem Zubair Ahmad
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.191-204
    • /
    • 2024
  • IOT has carried out important function in converting the traditional fitness care corporation. With developing call for in population, traditional healthcare structures have reached their outmost functionality in presenting sufficient and as plenty as mark offerings. The worldwide is handling devastating developing antique population disaster and the right want for assisted-dwelling environments is turning into inevitable for senior citizens. There furthermore a determination by means of the use of way of countrywide healthcare organizations to increase crucial manual for individualized, right blanketed care to prevent and manipulate excessive coronial situations. Many tech orientated packages related to Health Monitoring have been delivered these days as taking advantage of net boom everywhere on globe, manner to improvements in cellular and in IOT generation. Such as optimized indoor networks insurance, community shape, and fairly-low device fee performances, advanced tool reliability, low device energy consumption, and hundreds higher unusual common usual performance in network safety and privacy. Studies have highlighted fantastic advantages of integrating IOT with health care location and as era is improving the rate also cannot be that terrific of a problem. However, many challenges in this new paradigm shift notwithstanding the fact that exist, that need to be addressed. So the out most purpose of this research paper is 3 essential departments: First, evaluation of key elements that drove the adoption and boom of the Internet of factors based totally domestic some distance off monitoring; Second, present fashionable improvement of IOT in home a long manner off monitoring shape and key building gadgets; Third, communicate future very last effects and distinct guidelines of such type a long way off monitoring packages going ahead. Such Research is a wonderful manner in advance now not outstanding in IOT Terminology but in standard fitness care location.

The Monitoring System with PV Module-level Fault Diagnosis Algorithm (태양전지모듈 고장 진단 알고리즘을 적용한 모니터링시스템)

  • Ko, Suk-Whan;So, Jung-Hun;Hwang, Hye-Mi;Ju, Young-Chul;Song, Hyung-June;Shin, Woo-Gyun;Kang, Gi-Hwan;Choi, Jung-Rae;Kang, In-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • The objects of PV (Photovoltaic) monitoring system is to reduce the loss of system and operation and maintenance costs. In case of PV plants with configured of centralized inverter type, only 1 PV module might be caused a large loss in the PV plant. For this reason, the monitoring technology of PV module-level that find out the location of the fault module and reduce the system losses is interested. In this paper, a fault diagnosis algorithm are proposed using thermal and electrical characteristics of PV modules under failure. In addition, the monitoring system applied with proposed algorithm was constructed. The wireless sensor using LoRa chip was designed to be able to connect with IoT device in the future. The characteristics of PV module by shading is not failure but it is treated as a temporary failure. In the monitoring system, it is possible to diagnose whether or not failure of bypass diode inside the junction box. The fault diagnosis algorithm are developed on considering a situation such as communication error of wireless sensor and empirical performance evaluation are currently conducting.

FPGA integrated IEEE 802.15.4 ZigBee wireless sensor nodes performance for industrial plant monitoring and automation

  • Ompal, Ompal;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2444-2452
    • /
    • 2022
  • The field-programmable gate array (FPGA) is gaining popularity in industrial automation such as nuclear power plant instrumentation and control (I&C) systems due to the benefits of having non-existence of operating system, minimum software errors, and minimum common reason failures. Separate functions can be processed individually and in parallel on the same integrated circuit using FPGAs in comparison to the conventional microprocessor-based systems used in any plant operations. The use of FPGAs offers the potential to minimize complexity and the accompanying difficulty of securing regulatory approval, as well as provide superior protection against obsolescence. Wireless sensor networks (WSNs) are a new technology for acquiring and processing plant data wirelessly in which sensor nodes are configured for real-time signal processing, data acquisition, and monitoring. ZigBee (IEEE 802.15.4) is an open worldwide standard for minimum power, low-cost machine-to-machine (M2M), and internet of things (IoT) enabled wireless network communication. It is always a challenge to follow the specific topology when different Zigbee nodes are placed in a large network such as a plant. The research article focuses on the hardware chip design of different topological structures supported by ZigBee that can be used for monitoring and controlling the different operations of the plant and evaluates the performance in Vitex-5 FPGA hardware. The research work presents a strategy for configuring FPGA with ZigBee sensor nodes when communicating in a large area such as an industrial plant for real-time monitoring.

Using IoT and Apache Spark Analysis Technique to Monitoring Architecture Model for Fruit Harvest Region (IoT 기반 Apache Spark 분석기법을 이용한 과수 수확 불량 영역 모니터링 아키텍처 모델)

  • Oh, Jung Won;Kim, Hangkon
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.58-64
    • /
    • 2017
  • Modern society is characterized by rapid increase in world population, aging of the rural population, decrease of cultivation area due to industrialization. The food problem is becoming an important issue with the farmers and becomes rural. Recently, the researches about the field of the smart farm are actively carried out to increase the profit of the rural area. The existing smart farm researches mainly monitor the cultivation environment of the crops in the greenhouse, another way like in the case of poor quality t is being studied that the system to control cultivation environmental factors is automatically activated to keep the cultivation environment of crops in optimum conditions. The researches focus on the crops cultivated indoors, and there are not many studies applied to the cultivation environment of crops grown outside. In this paper, we propose a method to improve the harvestability of poor areas by monitoring the areas with bad harvests by using big data analysis, by precisely predicting the harvest timing of fruit trees growing in orchards. Factors besides for harvesting include fruit color information and fruit weight information We suggest that a harvest correlation factor data collected in real time. It is analyzed using the Apache Spark engine. The Apache Spark engine has excellent performance in real-time data analysis as well as high capacity batch data analysis. User device receiving service supports PC user and smartphone users. A sensing data receiving device purpose Arduino, because it requires only simple processing to receive a sensed data and transmit it to the server. It regulates a harvest time of fruit which produces a good quality fruit, it is needful to determine a poor harvest area or concentrate a bad area. In this paper, we also present an architectural model to determine the bad areas of fruit harvest using strong data analysis.

Design and implementation of agriculture system for Internet Of Things (사물인터넷을 위한 농장 시스템 설계 및 구현)

  • Lim, Soon-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8896-8900
    • /
    • 2015
  • Recently, various career paths draw young workers from twenty to forty to the metro city in Korea. The korea's agriculture sector has decrease in population and productivity which result a threat for it to become an aging society. Also, our country has a difficulty in a tough competition with other countries through agricultural market-opening such as WTO and FTA. In this paper, we introduce a technology using open-source project including Raspberry that easily accessible and applicable to an agricultural industry. In other words, as we build a device monitoring the production environment, everyone can use agricultural sector through an IoT technology, solve the problem with a labor shortage through production process automation, check the condition of the agricultural environment in real time, enhance the quality of the agricultural product by corresponding a certain condition, and improve the competitiveness through a competitive price comparing to the worldwide farm product. Also, we find a way to use data to the other business through data collection and analysis in a process of using the IoT.

A Study on the Improvement of Military Information Communication Network Efficiency Using CCN (CCN을 활용한 군 정보통신망 효율성 향상 방안)

  • Kim, Hui-Jung;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.799-806
    • /
    • 2020
  • The rapid growth of smartphone-to-Internet of Things (IoT) connections and the explosive demand for data usage centered on mobile video are increasing day by day, and this increase in data usage creates many problems in the IP system. In a full-based environment, in which information requesters focus on information providers to receive information from specific servers, problems arise with bottlenecks and large data processing. To address this problem, CCN networking technology, a future network technology, has emerged as an alternative to CCN networking technology, which reduces bottlenecks that occur when requesting popular content through caching of intermediate nodes and increases network efficiency, and can be applied to military information and communication networks to address the problem of traffic concentration and the use of various surveillance equipment in full-based networks, such as scientific monitoring systems, and to provide more efficient content.

Wireless Control System Using Spherical Camera (구형체 카메라를 이용한 무선 관제 시스템)

  • Jang, Jae-min;Shin, Soo Young;Ji, Yong-ju;Chae, Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.461-466
    • /
    • 2016
  • In this paper, a capsule body shaped surveillance/monitoring device is developed. The device includes a camera and GPS module to transmit live video data and real time GPS coordinates respectively using the Intel Edison module. A control application is developed for the smart phones and tablets to wirelessly view the live video stream and location of the capsule device and also to switch between the multiple capsule devices installed at different locations. The coordination between the developed device and the smart phone / tablet is done using the wireless function of the Intel Edison module.

Work Environment Monitoring of Workers Using Wearable Sensor and Helmet (착용형 센서와 헬멧을 이용한 작업자의 작업환경 모니터링)

  • Gu, Ye-Jin;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Accidents of worker that occur in isolated places are difficult to rescue, unlike general construction accidents. There is a problem of communication limitation when an accident occurs in an isolated place. Also, it is difficult to search the accident place due to the absence of CCTV. In order to solve these problems, this paper proposes a device that combines IoT technology with a safety helmet, which must be worn in the workplace. The proposed device additionally designs and implements a real-time PPG(Photoplethysmography) sensor, body temperature sensor, accelerometer sensor and a camera sensor on the helmet. The proposed helmet system allows the user and the control center to monitor the state of the worker. In addition, when an abnormal biological signal or fall occurs to the worker, the image is transmitted to the control center. By using the proposed system, it is possible to check the status of the worker in real time, so that it has an advantage that it can cope with the accident quickly.