• Title/Summary/Keyword: IoT environments

Search Result 321, Processing Time 0.037 seconds

Design and Estimation of a Session Key based Access Control Scheme for Secure Communications in IoT Environments (IoT 환경에서 안전한 통신을 위한 세션 키 기반 접근 제어 기법의 설계 및 평가)

  • Jin, Byungwook;Jung, Dongwoog;Cha, Siho;Jun, Moonseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Internet of Things (IoT) services are widely used in appliances of daily life and industries. IoT services also provide various conveniences to users and are expected to affect value added of all industries and national competitiveness. However, a variety of security threats are increased in IoT environments and lowers reliability of IoT devices and services that make some obstacles for commercialization. The attacks arising in IoT environments are making industrial and normal life accidents unlike existing information leak and monetary damages, and can expand damage scale of leakage of personal information and privacy more than existing them. To solve these problems, we design a session key based access control scheme for secure communications in IoT environments. The proposed scheme reinforces message security by generating session key between device and access control network system. We analyzed the stability of the proposed access scheme in terms of data forgery and corruption, unauthorized access, information disclosure, privacy violations, and denial of service attacks. And we also evaluated the proposed scheme in terms of permission settings, privacy indemnity, data confidentiality and integrity, authentication, and access control.

Design and Evaluation of a High-performance Key-value Storage for Industrial IoT Environments (산업용 IoT 환경을 위한 고성능 키-값 저장소의 설계 및 평가)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.127-133
    • /
    • 2021
  • In industrial IoT environments, sensors generate data for their detection targets and deliver the data to IoT gateways. Therefore, managing large amounts of real-time sensor data is an essential feature for IoT gateways, and key-value storage engines are widely used to manage these sensor data. However, key-value storage engines used in IoT gateways do not take into account the characteristics of sensor data generated in industrial IoT environments, and this limits the performance of key-value storage engines. In this paper, we optimize the key-value storage engine by utilizing the features of sensor data in industrial IoT environments. The proposed optimization technique is to analyze the key, which is the input of a key-value storage engine, for further indexing. This reduces excessive write amplification and improves performance. We implement our optimization scheme in LevelDB and use the workload of the TPCx-IoT benchmark to evaluate our proposed scheme. From experimental results we show that our proposed technique achieves up to 21 times better than the existing scheme, and this shows that the proposed technique can perform high-speed data ingestion in industrial IoT environments.

A Study on Log Collection to Analyze Causes of Malware Infection in IoT Devices in Smart city Environments

  • Donghyun Kim;Jiho Shin;Jung Taek Seo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.17-26
    • /
    • 2023
  • A smart city is a massive internet of things (IoT) environment, where all terminal devices are connected to a network to create and share information. In accordance with massive IoT environments, millions of IoT devices are connected, and countless data are generated in real time. However, since heterogeneous IoT devices are used, collecting the logs for each IoT device is difficult. Due to these issues, when an IoT device is invaded or is engaged in malicious behavior, such as infection with malware, it is difficult to respond quickly, and additional damage may occur due to information leakage or stopping the IoT device. To solve this problem, in this paper, we propose identifying the attack technique used for initial access to IoT devices through MITRE ATT&CK, collect the logs that can be generated from the identified attack technique, and use them to identify the cause of malware infection.

A Design and Implementation for Registration Service of IoT Embedded Node using CoAP Protocol-based Resource Directory in Mobile Internet Environments (모바일 인터넷 환경에서 CoAP 프로토콜 기반의 RD를 이용한 IoT 임베디드 노드 등록 서비스 설계 및 구현)

  • Hang, Lei;Jin, Wenquan;Kim, Do-Hyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.147-153
    • /
    • 2016
  • Recently, IETF (Internet Engineering Task) working group has adopted CoAP (Constrained Application Protocol) as a standard IoT proctocol. CoAP is a specialized web transfer protocol for use with constrained nodes and constrained environment such as small memory and low power networks. In this paper, we design and implement a registration service with CoAP protocol based on RD(Resource Directory) to connect IoT nodes in mobile Internet environments. The resource directory between the mobile terminal and IoT nodes provides to discover the IoT nodes and get the context data. The mobile terminal has as the CoAP client and embedded IoT nodes includes as the CoAP server so that it can conveniently manage the constrained IoT nodes to get the context data and control devices in a mobile environments.

CoAP-based Reliable Message Transmission Scheme in IoT Environments

  • Youn, Joosang;Choi, Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2016
  • In this paper, we propose reliable message transmission scheme based on CoAP, considering the constrained feature of IoT device, such as low power, the limited memory size and low computing capacity. Recently, the various kinds of application protocol has been studied to support IoT environments. In particular, CoAP protocol was developed as application protocol for IoT at the IETF core WG. However, because CoAP protocol is deigned to be used in constrained node, this protocol uses UDP at transport layer. Thus, data loss may occur frequently in network congestion environments. The proposed scheme, in this paper, is to overcome the problem of frequent data loss with low overhead. Also it includes the function which is to minimize the data loss in sleep mode of IoT device.

IoT data processing techniques based on machine learning optimized for AIoT environments (AIoT 환경에 최적화된 머신러닝 기반의 IoT 데이터 처리 기법)

  • Jeong, Yoon-Su;Kim, Yong-Tae
    • Journal of Industrial Convergence
    • /
    • v.20 no.3
    • /
    • pp.33-40
    • /
    • 2022
  • Recently, IoT-linked services have been used in various environments, and IoT and artificial intelligence technologies are being fused. However, since technologies that process IoT data stably are not fully supported, research is needed for this. In this paper, we propose a processing technique that can optimize IoT data after generating embedded vectors based on machine learning for IoT data. In the proposed technique, for processing efficiency, embedded vectorization is performed based on QR such as index of IoT data, collection location (binary values of X and Y axis coordinates), group index, type, and type. In addition, data generated by various IoT devices are integrated and managed so that load balancing can be performed in the IoT data collection process to asymmetrically link IoT data. The proposed technique processes IoT data to be orthogonalized based on hash so that IoT data can be asymmetrically grouped. In addition, interference between IoT data may be minimized because it is periodically generated and grouped according to IoT data types and characteristics. Future research plans to compare and evaluate proposed techniques in various environments that provide IoT services.

Blockchain-based multi-IoT verification model for overlay cloud environments (오버레이 클라우드 환경을 위한 블록체인 기반의 다중 IoT 검증 모델)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.151-157
    • /
    • 2021
  • Recently, IoT technology has been applied to various cloud environments, requiring accurate verification of various information generated by IoT devices. However, due to the convergence of IoT technologies and 5G technologies, accurate analysis is required as IoT information processing is rapidly processed. This paper proposes a blockchain-based multi-IoT verification model for overlay cloud environments. The proposed model multi-processes IoT information by further classifying IoT information two layers (layer and layer) into bits' blockchain to minimize the bottleneck of overlay networks while ensuring the integrity of information sent and received from embedded IoT devices within local IoT groups. Furthermore, the proposed model allows the layer to contain the weight information, allowing IoT information to be easily processed by the server. In particular, transmission and reception information between IoT devices facilitates server access by distributing IoT information from bits into blockchain to minimize bottlenecks in overlay networks and then weighting IoT information.

NAAL: Software for controlling heterogeneous IoT devices based on neuromorphic architecture abstraction (NAAL: 뉴로모픽 아키텍처 추상화 기반 이기종 IoT 기기 제어용 소프트웨어)

  • Cho, Jinsung;Kim, Bongjae
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2022
  • Neuromorphic computing generally shows significantly better power, area, and speed performance than neural network computation using CPU and GPU. These characteristics are suitable for resource-constrained IoT environments where energy consumption is important. However, there is a problem in that it is necessary to modify the source code for environment setting and application operation according to heterogeneous IoT devices that support neuromorphic computing. To solve these problems, NAAL was proposed and implemented in this paper. NAAL provides functions necessary for IoT device control and neuromorphic architecture abstraction and inference model operation in various heterogeneous IoT device environments based on common APIs of NAAL. NAAL has the advantage of enabling additional support for new heterogeneous IoT devices and neuromorphic architectures and computing devices in the future.

Reliable Mobility Management Using CoAP in Internet of Things Environments (사물 인터넷 환경에서 CoAP 기반의 신뢰성 있는 이동성 관리 방법)

  • Chun, Seung Man;Kim, Hyun Su;Ham, Chang Gyun;Chung, Yun Seok;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.13-18
    • /
    • 2016
  • In Internet of Things (IoT) environment, a variety of smart devices are connected to Internet through various network technologies such as 4G/5G, WiBro, Bluetooth, etc. in order to provide the remote monitoring service such as smart healthcare service, etc. Most standard mobility management protocols based on IETF Mobile IP may not be suitable for Internet of Things (IoT) environments due to constrained power, constrained CPU processing and memory capacity, and large signalling overhead which are inherently accompanied by various devices in IoT environments. In this article, we propose a new mobility management protocol CoMP (CoAP-based Mobility Managemenbt Protocol) for reliable mobility management in IoT environments. The architecture and algorithm to achieve both reliability and simplicity for IoT mobility management are proposed. Finally, performance has been evaluated by both mathematical analysis and simulation.

Different Heterogeneous IoT Data Management Techniques for IoT Cloud Environments (IoT 클라우드 환경을 위한 서로 다른 이기종의 IoT 데이터 관리 기법)

  • Cho, Sung-Nam;Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.15-21
    • /
    • 2020
  • Although IoT systems are used in a variety of heterogeneous environments as cloud environments develop, all IoT devices are not provided with reliable protocols and services. This paper proposes an IoT data management technique that can extend the IoT cloud environment to an n-layer multi-level structure so that information collected from different heterogeneous IoT devices can be efficiently sorted and processed. The proposed technique aims to classify and process IoT information by transmitting routing information and weight information through wireless data link data collected from heterogeneous IoT devices. The proposed technique not only delivers information classified from IoT devices to the corresponding routing path but also improves the efficiency of IoT data processing by assigning priority according to weight information. The IoT devices used in the proposed technique use each other's reliable protocols, and queries for other IoT devices locally through a local cloud composed of hierarchical structures have features that ensure scalability because they maintain a certain cost.y channels of IoT information in order to make the most of the multiple antenna technology.