• Title/Summary/Keyword: IoT Devices Security

Search Result 379, Processing Time 0.022 seconds

Analysis of the Vulnerability of the IoT by the Scenario (시나리오 분석을 통한 사물인터넷(IoT)의 취약성 분석)

  • Hong, Sunghyuck;Sin, Hyeon-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.1-7
    • /
    • 2017
  • As the network environment develops and speeds up, a lot of smart devices is developed, and a high-speed smart society can be realized while allowing people to interact with objects. As the number of things Internet has surged, a wide range of new security risks and problems have emerged for devices, platforms and operating systems, communications, and connected systems. Due to the physical characteristics of IoT devices, they are smaller in size than conventional systems, and operate with low power, low cost, and relatively low specifications. Therefore, it is difficult to apply the existing security solution used in the existing system. In addition, IoT devices are connected to the network at all times, it is important to ensure that personal privacy exposure, such as eavesdropping, data tampering, privacy breach, information leakage, unauthorized access, Significant security issues can arise, including confidentiality and threats to facilities. In this paper, we investigate cases of security threats and cases of network of IoT, analyze vulnerabilities, and suggest ways to minimize property damage by Internet of things.

An efficient access control techniques between different IoT devices in a cloud environment (클라우드 환경에서 서로 다른 IoT 장치간 효율적인 접근제어 기법)

  • Jeong, Yoon-Su;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.57-63
    • /
    • 2018
  • IoT devices are used in many areas to perform various roles and functions in a cloud environment. However, a method of access control that can stably control the IoT device has not been proposed yet. In this paper, we propose a hierarchical multi-level property access control scheme that can perform stable access of IoT devices used in a cluster environment. In order to facilitate the access of the IoT device, the proposed method not only provides the ID key (security token) unique to the IoT device by providing the IoT Hub, but also allows the IoT Hub to authenticate the X.509 certificate and the private key, So that the private key of the IoT device can not be seen outside the IoT device. As a result of the performance evaluation, the proposed method improved the authentication accuracy by 10.5% on average and the processing time by 14.3%. The overhead of IoT Hub according to the number of IoT attributes was 9.1% lower than the conventional method.

Cyber KillChain Based Security Policy Utilizing Hash for Internet of Things (해시를 활용한 사이버킬체인 기반의 사물인터넷 보안 정책)

  • Jeong, So-Won;Choi, Yu-Rim;Lee, Il-Gu
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.179-185
    • /
    • 2018
  • Technology of Internet of Things (IoT) which is receiving the spotlight recently as a new growth engine of Information Communications Technology (ICT) industry in the $4^{th}$ Industrial Revolution needs trustworthiness beyond simple technology of security. IoT devices should consider trustworthiness from planning and design of IoTs so that everyone who develop, evaluate and use the device can measure and trust its security. Increased number of IoTs and long lifetime result in the increased securituy vulnerability due to the difficulty of software patch and update. In this paper, we investigated security and scalability issues of current IoT devices through research of the technical, political and industrial trend of IoT. In order to overcome the limitations, we propose an automatic verification of software integrity utilizing and a political solution to apply cyber killchain based security mechanism using hash which is an element technology of blockchain to solve these problems.

Key-Agreement Protocol between IoT and Edge Devices for Edge Computing Environments (에지 컴퓨팅 환경을 위한 IoT와 에지 장치 간 키 동의 프로토콜)

  • Choi, Jeong-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.23-29
    • /
    • 2022
  • Recently, due to the increase in the use of Internet of Things (IoT) devices, the amount of data transmitted and processed to cloud computing servers has increased rapidly. As a result, network problems (delay, server overload and security threats) are emerging. In particular, edge computing with lower computational capabilities than cloud computing requires a lightweight authentication algorithm that can easily authenticate numerous IoT devices.In this paper, we proposed a key-agreement protocol of a lightweight algorithm that guarantees anonymity and forward and backward secrecy between IoT and edge devices. and the proposed algorithm is stable in MITM and replay attacks for edge device and IoT. As a result of comparing and analyzing the proposed key-agreement protocol with previous studies, it was shown that a lightweight protocol that can be efficiently used in IoT and edge devices.

A Study on the Improvement of Security Threat Analysis and Response Technology by IoT Layer (IoT 계층별 보안위협 분석 및 대응기술 개선 방안 연구)

  • Won, Jong-Hyuk;Hong, Jung-Wan;You, Yen-Yoo
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.149-157
    • /
    • 2018
  • In this paper, we propose an attack detection technology using SDN Controller to study security threats in IoT environment. The research methodology has been developed by applying IoT security threat management technology to the IoT layer and analyzing the research trend of applied security technology. The study results show that the effectiveness of the detection method using the sampling method is studied by adding OpenFlow based SDN Controller to the network switch equipment of the existing IoT network. This method can detect the monitoring and attack of the whole network by interworking with IDS and IPS without affecting the performance of existing IoT devices. By applying such improved security threat countermeasure technology, we expect to be able to relieve anxiety of IoT security threat and increase service reliability.

An Approach for Applying Network-based Moving Target Defense into Internet of Things Networks

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.35-42
    • /
    • 2019
  • In this paper, we propose an approach to apply network-based moving target defense into Internet of Things (IoT) networks. The IoT is a technology that provides the high interconnectivity of things like electronic devices. However, cyber security risks are expected to increase as the interconnectivity of such devices increases. One recent study demonstrated a man-in-the-middle attack in the statically configured IoT network. In recent years, a new approach to cyber security, called the moving target defense, has emerged as a potential solution to the challenge of static systems. The approach continuously changes system's attack surface to prevent attacks. After analyzing IPv4 / IPv6-based moving target defense schemes and IoT network-related technologies, we present our approach in terms of addressing systems, address mutation techniques, communication models, network configuration, and node mobility. In addition, we summarize the direction of future research in relation to the proposed approach.

Blockchain-based authentication for IoT

  • Alaa Alsubhi;Jawaher Alhrthi;Wajdi Alhakami
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.198-204
    • /
    • 2024
  • Correspondence security between IoT devices is a significant concern, and the blockchain makes the latest difference by reducing this matter. In the blockchain idea, the larger part or even all organization hubs check the legitimacy and precision of traded information before tolerating and recording them, regardless of whether this information is identified with monetary exchanges or estimations of a sensor or a confirmation message. In assessing the legitimacy of a traded information, hubs should agree to play out an uncommon activity. The chance to enter and record exchanges and problematic cooperation with the framework is fundamentally decreased. To share and access the executives of IoT devices data with disseminated demeanour, another confirmation convention dependent on block-chain is proposed, and it is guaranteed that this convention fulfils client protection saving and security. This paper highlights the recent approaches conducted by other researchers to secure the Internet of Things environments using blockchain. These approaches are studied and compared with each other to present their features and disadvantages.

Probabilistic Analysis of Code-Reuse Attacks and Defenses in IoT

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.24-28
    • /
    • 2017
  • In the Internet of Things (IoT), resource-limited smart devices communicate with each other while performing sensing and computation tasks. Thus, these devices can be exposed to various attacks being launched and spread through network. For instance, attacker can reuse the codes of IoT devices for malicious activity executions. In the sense that attacker can craft malicious codes by skillfully reusing codes stored in IoT devices, code-reuse attacks are generally considered to be dangerous. Although a variety of schemes have been proposed to defend against code-reuse attacks, code randomization is regarded as a representative defense technique against code-reuse attacks. Indeed, many research have been done on code randomization technique, however, there are little work on analysis of the interactions between code randomization defenses and code-reuse attacks although it is imperative problem to be explored. To provide the better understanding of these interactions in IoT, we analyze how code randomization defends against code-reuse attacks in IoT and perform simulation on it. Both analysis and simulation results show that the more frequently code randomizations occur, the less frequently code-reuse attacks succeed.

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.

Threats Analysis and Mobile Key Recovery for Internet of Things (IoT 환경에서의 보안위협 분석과 모바일 키 복구)

  • Lee, Yunjung;Park, Yongjoon;Kim, Chul Soo;Lee, Bongkyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.918-923
    • /
    • 2016
  • IoT should be considered security risk environments such as various platforms and services including smart devices that can be mounted on household electric appliances, healthcare, car, and heterogeneous networks that are connected to the Internet, cloud services and mobile Apps.. In this paper, we provide analysis of new security threats, caused by open-platform of IoT and sensors via the Internet. Also, we present the key recovery mechanism that is applied to IoT. It results to have compatibility with given research, reduces network overhead, and performs key recovery without depending on key escrow agencies or authorized party.