• Title/Summary/Keyword: IoT Devices Security

Search Result 394, Processing Time 0.025 seconds

Hybrid Resource Allocation Scheme in Secure Intelligent Reflecting Surface-Assisted IoT

  • Su, Yumeng;Gao, Hongyuan;Zhang, Shibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3256-3274
    • /
    • 2022
  • With the rapid development of information and communications technology, the construction of efficient, reliable, and safe Internet of Things (IoT) is an inevitable trend in order to meet high-quality demands for the forthcoming 6G communications. In this paper, we study a secure intelligent reflecting surface (IRS)-assisted IoT system where malicious eavesdropper trying to sniff out the desired information from the transmission links between the IRS and legitimate IoT devices. We discuss the system overall performance and propose a hybrid resource allocation scheme for maximizing the secrecy capacity and secrecy energy efficiency. In order to achieve the trade-off between transmission reliability, communication security, and energy efficiency, we develop a quantum-inspired marine predator algorithm (QMPA) for realizing rational configuration of system resources and prevent from eavesdropping. Simulation results demonstrate the superiority of the QMPA over other strategies. It is also indicated that proper IRS deployment and power allocation are beneficial for the enhancement of system overall capacity.

Functional Privacy-preserving Outsourcing Scheme with Computation Verifiability in Fog Computing

  • Tang, Wenyi;Qin, Bo;Li, Yanan;Wu, Qianhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.281-298
    • /
    • 2020
  • Fog computing has become a popular concept in the application of internet of things (IoT). With the superiority in better service providing, the edge cloud has become an attractive solution to IoT networks. The data outsourcing scheme of IoT devices demands privacy protection as well as computation verification since the lightweight devices not only outsource their data but also their computation. Existing solutions mainly deal with the operations over encrypted data, but cannot support the computation verification in the same time. In this paper, we propose a data outsourcing scheme based on an encrypted database system with linear computation as well as efficient query ability, and enhance the interlayer program in the original system with homomorphic message authenticators so that the system could perform computational verifying. The tools we use to construct our scheme have been proven secure and valid. With our scheme, the system could check if the cloud provides the correct service as the system asks. The experiment also shows that our scheme could be as effective as the original version, and the extra load in time is neglectable.

Hardware Design with Efficient Pipelining for High-throughput AES (높은 처리량을 가지는 AES를 위한 효율적인 파이프라인을 적용한 하드웨어 설계)

  • Antwi, Alexander O.A;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.578-580
    • /
    • 2017
  • IoT technology poses a lot of security threats. Various algorithms are thus employed in ensuring security of transactions between IoT devices. Advanced Encryption Standard (AES) has gained huge popularity among many other symmetric key algorithms due to its robustness till date. This paper presents a hardware based implementation of the AES algorithm. We present a four-stage pipelined architecture of the encryption and key generation. This method allowed a total plain text size of 512 bits to be encrypted in 46 cycles. The proposed hardware design achieved a maximum frequency of 1.18GHz yielding a throughput of 13Gbps and 800MHz yielding a throughput of 8.9Gbps on the 65nm and 180nm processes respectively.

  • PDF

Analysis and Study on Invasion Threat and Security Measures for Smart Home Services in IoT Environment (사물인터넷 환경에서의 스마트홈 서비스 침해위협 분석 및 보안 대책 연구)

  • Lee, Myongyeal;Park, Jaepyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.27-32
    • /
    • 2016
  • In general, IoT(Internet of things) designate the intelligence technologies and services which interact all necessity information between human and things, things and thing and things and systems with all things connecting through the internet based. The smart home in present of IoT environment fuses the daily supplies/equipment which needs to use for the private life with the internet of things that is the fruit of the converged business through all most private consumption related in vastly. The concept of smart home has been built around early 2000s due to the spread of high speed internet and advanced of smart electronics and internet, furthermore influencing by the enhancement of wireless network and smart devices, it is advanced as a smart home within the internet of things environment. Smart home service inside the house which most closely implemented with personal life is being developed and advanced in various forms. These developments may exert a positive effect, but if it does not resolve the security issues for the smart home service, then it may cause a big plague of privacy and personal life.

Machine Learning-based Detection of DoS and DRDoS Attacks in IoT Networks

  • Yeo, Seung-Yeon;Jo, So-Young;Kim, Jiyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2022
  • We propose an intrusion detection model that detects denial-of-service(DoS) and distributed reflection denial-of-service(DRDoS) attacks, based on the empirical data of each internet of things(IoT) device by training system and network metrics that can be commonly collected from various IoT devices. First, we collect 37 system and network metrics from each IoT device considering IoT attack scenarios; further, we train them using six types of machine learning models to identify the most effective machine learning models as well as important metrics in detecting and distinguishing IoT attacks. Our experimental results show that the Random Forest model has the best performance with accuracy of over 96%, followed by the K-Nearest Neighbor model and Decision Tree model. Of the 37 metrics, we identified five types of CPU, memory, and network metrics that best imply the characteristics of the attacks in all the experimental scenarios. Furthermore, we found out that packets with higher transmission speeds than larger size packets represent the characteristics of DoS and DRDoS attacks more clearly in IoT networks.

HFN-Based Right Management for IoT Health Data Sharing (IoT 헬스 데이터 공유를 위한 HFN 기반 권한 관리)

  • Kim, Mi-sun;Park, Yongsuk;Seo, Jae-Hyun
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.88-98
    • /
    • 2021
  • As blockchain technology has emerged as a security issue for IoT, technology which integrates block chain into IoT is being studied. In this paper is a research concerning token-based IoT service access control technology for data sharing, which propose a possessor focused data sharing technic by using the permissioned blockchain. To share IoT health data, a Hyperledger Fabric Network consisting of three organizations was designed to provide a way to share data by applying different access control policies centered on device owners for different services. In the proposed system, the device owner issues access control tokens with different security levels applied to the participants in the organization, and the token issue information is shared through the distributed ledger of the HFN. In IoT, it is possible to lightweight the access control processing of IoT devices by granting tokens to service requesters who request access to data. Furthmore, by sharing token issuance information among network participants using HFN, the integrity of the token is guaranteed and all network participants can trust the token. The device owners can trust that their data is being used within their authorized rights, and control the collection and use of data.

Secure Configuration Scheme for Internet of Things using NFC as OOB Channel (NFC를 OOB 채널로 활용한 사물인터넷 보안 설정 기술)

  • Kim, Jeongin;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • The PSK (Pre-shared Secret Key) based method is appropriate for the IoT environment consisting of lightweight devices since this method requires less computing time and energy than the method to configure the session key based on the public key algorithm. A fundamental prerequisite for the PSK based method is that PSK should have been configured between the communication entities safely in advance. However, in case of a small sensor or actuator, no input and output interface such as keyboard and monitor required for configuration exists, so it is more difficult to configure PSK for such lightweight devices safely in the IoT environment than the previous Internet devices. Especially, normal users lack expertise in security so they face difficulty in configuration. Therefore, the default value configured at the time of manufacturing at factories is used or the device installer configures PSK in most cases. In such case, it is a matter for consideration whether all installers and manufacturers can be trusted or not. In order to solve such problem, this paper proposes a secure bootstrapping scheme, which utilizes the NFC (Near Field Communication) as an OOB (Out-Of-Band) channel, for lightweight devices with limited resources.

A Home Management System Using Smart Devices in an IoT Environment (IoT 환경에서의 스마트디바이스를 활용한 주택관리시스템)

  • Ryu, Chang-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.807-808
    • /
    • 2016
  • With the recent rise in nuclear families and single-member families, there is a need for the kind of home management unaffected by neither space nor time. Moreover, electronic devices in and around the home need to be managed efficiently and prevented from overheating, and there is an increasing risk of fire, theft, and leak of personal data with these devices, which is leading to an increase in the economic costs. Accordingly, there is a growing need for an efficient and secure smart home management system. This paper proposes a home management system that uses smart devices. This system has addressed the shortcomings of a conventional Internet-based home network. Furthermore, it communicates with IoT-enabled devices and features intelligent information home appliances that are isolated from personally identifiable information and which are secure against advanced persistent threats, a type of cyber-attack.

  • PDF

Randomness Based Fuzzing Test Case Evaluation for Vulnerability Analysis of Industrial Control System (산업제어시스템 취약성 분석을 위한 무작위성 기반 퍼징 테스트 케이스 평가 기법)

  • Kim, SungJin;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.179-186
    • /
    • 2018
  • The number of devices connect to the internet is rapidly increasing with the advent of the IoT(Internet of Things). The IoT has improved the convenience of life. However, it makes security issues such as privacy violations. Therefore cybersecurity is the most important issue to be discussed nowadays. Especially, various protocols are used for same purpose due to rapidly increase of IoT market. To deal with this security threat noble vulnerability analysis is needed. In this paper, we contribute to the IoT security by proposing a new randomness-based test case evaluation methodology using variance and entropy. The test case evaluation method proposed in this paper can evaluate the test cases at a high speed regardless of the test set size, unlike the traditional technique.

A Study on Vulnerability Factors of The Smart Home Service ('스마트홈 서비스'의 보안취약요인에 관한 연구)

  • Jeon, Jeong Hoon
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.169-176
    • /
    • 2020
  • Recently, the era in which various services using smart devices are used is sometimes referred to as the so-called "smart era". Among these, Smart Home Service' have not only brought about significant changes in the residential environment and culture, but are evolving very rapidly. and The 'Smart Home Service' provides more convenient services to users through communication between various electronic products in general homes, and has a bright future in the future. In particular,'Smart Home Service' provides various services combined based on IoT(Internet of Things) technology and wired/wireless communication in connection between various devices. However, such a "smart home service" inherits the security vulnerabilities of the underlying technologies such as the Internet of Things and wired and wireless communication technologies, and accidents that lead to the leakage of personal information and invasion of privacy continue to occur. So, it is necessary to prepare a countermeasure and prevention against the weak factors of the underlying technologies. Therefore, this paper is expected to be used as basic data for future application technology development and countermeasure technology by examining various security vulnerability factors of 'Smart Home Service'.