• Title/Summary/Keyword: IoT 장치

Search Result 422, Processing Time 0.027 seconds

A study on the honeycomb entry and exit counting system for measuring the amount of movement of honeybees inside the beehive (벌통 내부 꿀벌 이동량 측정을 위한 벌집 입·출입 계수 시스템 연구)

  • Kim, Joon Ho;Seo, Hee;Han, Wook;Chung, Wonki
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.857-862
    • /
    • 2021
  • Recently, rapid climate change has had a significant impact on the bee ecosystem. The decrease in the number of bees and the change in the flowering period have a huge impact on the harvesting of beekeepers. Accordingly, attention is focused on smart beekeeping, which introduces IoT technology to beekeeping. According to the characteristics of beekeeping, it is impossible to continuously observe the beehive in the hive with the naked eye, and the condition of the hive is mostly dependent on knowledge from experience. Although a system that can measure partly through sensors such as temperature/humidity change inside the hive and measurement of the amount of CO2 is applied, there is no research on measuring the movement path and amount of movement of bees inside the beehive. Part of the migration of honeybees inside the hive can provide basic information to predict the most important cleavage time in beekeeping. In this study, we propose a device that detects the movement path of bees and measures and records data entering and exiting the hive in real time. The device proposed in this study was developed according to the honeycomb standard of the existing beehive so that beekeeping farms could use it. The development method used a photodetector that can detect the movement of bees to configure 16 movement paths and to detect the movement of bees in real time. If the measured honeybee movement status is utilized, the problem of directly observing the colony with the naked eye in order not to miss the swarming time can be solved.

Remote elevator call research using Bluetooth beacon signal. (블루투스 비콘 신호를 이용한 원거리 엘리베이터 호출 연구)

  • Kim, Hyun;Ko, Young-joon;Lee, Tae-hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1297-1300
    • /
    • 2017
  • 엘리베이터는 각종 최첨단 장치로 작동되지만, 승객의 호출에만 수동적으로 작동한다. 이러한 현상은 간발의 차이로 엘리베이터를 놓치는 경우를 종종 만든다. 또한 엘리베이터를 조작하기 힘든 상태(무거운 짐을 들고 있거나, 몸이 불편한 경우, 승객이 붐비는 경우 등)에는 이런 수동성은 큰 불편함으로 다가온다. 이에 본 연구팀은 엘리베이터에 IoT를 접목하여 스스로 승객의 목적 층을 인식하여 자동으로 움직일 수 있도록 도와주는 방안을 연구하였다. 이를 위해 엘리베이터 승객의 출입을 인식하는 장치를 설계하고, 이를 바탕으로, 비콘을 이용해 범위 안에 승객이 접근 시 자동적으로 엘리베이터를 호출하는 연구를 진행하였다. 또한 출입 기록을 통해 승객이 호출 버튼을 누르기도 전에 엘리베이터가 먼저 인식하여 대기하고 목적 층을 스스로 찾아가는 시스템의 기반을 마련할 수 있었다.

Classification of terminal using YOLO network (YOLO 네트워크를 이용한 단자 구분)

  • Daun Jeong;Jeong Seong-Hun;Jaeyun Gim;jihoon Jung;Kyeongbo Kong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.183-186
    • /
    • 2022
  • 최근 인공지능 기반 객체 탐지 기술이 발전함에 따라 영상 감시, 얼굴 인식, 로봇 제어, IoT, 자율주행, 제조업, 보안 등 다양한 분야에 활용되고 있다. 이에 본 논문은 발전된 객체 탐지 알고리즘을 이용하여 비전문가에겐 생소한 컴퓨터나 전기 장치 등의 '단자(terminal)' 모양을 구별하는 방법을 제안한다. 이를 위해 객체 탐지 프로그램인 You Only Look Once (YOLO) 알고리즘을 이용하여 입력한 단자들의 모양을 검출하는 알고리즘을 구성하였다. 일상에서 쉽게 볼 수 있는 단자들의 이미지(VGA, DVI, HDMI, DP, USB-A, USB-C)를 라벨링하여 데이터셋을 구축하였고, YOLOv4와 YOLOv5 두 버전의 알고리즘을 사용하여 성능을 검증하였다. 실험 결과 mean Average Precision(mAP) 기준 최대 92.9%의 정확도를 얻을 수 있었다. 전기 장치에 따라 단자의 모양이 다양하고, 그 종류 또한 많기 때문에 본 연구가 방송 기술 등의 여러 분야에 응용될 것으로 기대된다.

  • PDF

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.

Real-time Reefer Container Monitoring System based on IoT (IoT 기반 실시간 냉장컨테이너 상태 모니터링 시스템)

  • Moon, Young-Sik;Jung, Jun-Woo;Choi, Sung-Pill;Kim, Tae-Hoon;Lee, Byung-Ha;Kim, Jae-Joong;Choi, Hyung-Lim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.629-635
    • /
    • 2015
  • In this paper, we propose the reefer container monitoring system that not only monitors internal temperature, humidity of reefer container but also tracks the real-time location using GPS. It consists of a tag of information of situation using 433MHz RF transmitter(communication), GPS to track the real-time location and a device using WCDMA/GSM communication to transmit information to the server. We tested by applying the proposed system in reefer containers with yellow melons, melons transported from Korea to Singapore to track the location and check the temperature and the humidity. The result of this test is that there is a temperature difference around 1.7 degree depending on the position of inside of container and maintains the humidity stably about 97%. If we apply this proposed system to agricultural marketing, it is possible to get the time that fruits start to decay and minimize the loss of fruits by decaying during shipping.

Sensor technology for environmental monitoring of shrimp farming (새우양식 환경 모니터링을 위한 센서기술 동향 분석)

  • Hur, Shin;Park, Jung Ho;Choi, Sang Kyu;Lee, Chang Won;Kim, Ju Wan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.154-164
    • /
    • 2021
  • In this study, the IoT sensor technology required for improving the survival rate and high-density productivity of individual shrimp in smart shrimp farming (which involves the usage of recirculating aquaculture systems and biofloc technology) was analyzed. The principles and performances of domestic and overseas water quality monitoring IoT sensors were compared. Furthermore, the drawbacks of existing aquaculture monitoring technologies and the countermeasures for future aquaculture monitoring technologies were examined. In particular, for farming white-legged shrimp, an IoT sensor was employed to collect measurement indicators for managing the water quality environment in real-time, and the IoT sensor-based real-time monitoring technology was then analyzed for implementing the optimal farming environment. The results obtained from this study can potentially contribute to the realization of an autonomous farming platform that can improve the survival rate and productivity of shrimp, achieve feed reduction, improve the water quality environment, and save energy.

Development of VR-based Crane Simulator using Training Server (트레이닝 서버를 이용한 VR 기반의 크레인 시뮬레이터 개발)

  • Wan-Jik Lee;Geon-Young Kim;Seok-Yeol Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.703-709
    • /
    • 2023
  • It is most desirable to train with a real crane in an environment similar to that of a port for crane operation training in charge of loading and unloading in a port, but it has time and space limitations and cost problems. In order to overcome these limitations, VR(Virtual Reality) based crane training programs and related devices are receiving a lot of attention. In this paper, we designed and implemented a VR-based harbor crane simulator operating on an HMD. The simulator developed in this paper consists of a crane simulator program that operates on the HMD, an IoT driving terminal that processes trainees' crane operation input, and a training server that stores trainees' training information. The simulator program provides VR-based crane training scenarios implemented with Unity3D, and the IoT driving terminal developed based on Arduino is composed of two controllers and transmits the user's driving operation to the HMD. In particular, the crane simulator in this paper uses a training server to create a database of environment setting values for each educator, progress and training time, and information on driving warning situations. Through the use of such a server, trainees can use the simulator in a more convenient environment and can expect improved educational effects by providing training information.

NBAS: NFT-based Bluetooth Device Authentication System (NBAS: NFT를 활용한 블루투스 장치 인증시스템)

  • Hwang, Seong-Uk;Son, Sung-Moo;Chung, Sung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.793-801
    • /
    • 2022
  • Most Bluetooth devices are commonly used in various ways these days, but they can be often lost due to small-size devices. However, most Bluetooth protocol do not provide authentication functions to legitimate owners, and thus someone who obtains the lost Bluetooth device can easily connect to their smart devices to use it. In this paper, we propose NBAS can authenticates legitimate owners using NFT on lossy Bluetooth devices.NBAS generates a digital wallet on the blockchain using the decentralized network Ethereum blockchain and facilitating the MAC address of the Bluetooth device in the digital wallet. The owner of the wallet uses a private key to certify the Bluetooth device using NFT. The initial pairing time of NBAS was 10.25 sec, but the reconnection time was 0.007 sec similar to the conventional method, and the pairing rejection time for unapproved users was 1.58 sec on average. Therefore, the proposed NBAS effectively shows the device authentication over the conventional Bluetooth.

Design of Multi-Level Abnormal Detection System Suitable for Time-Series Data (시계열 데이터에 적합한 다단계 비정상 탐지 시스템 설계)

  • Chae, Moon-Chang;Lim, Hyeok;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.1-7
    • /
    • 2016
  • As new information and communication technologies evolve, security threats are also becoming increasingly intelligent and advanced. In this paper, we analyze the time series data continuously entered through a series of periods from the network device or lightweight IoT (Internet of Things) devices by using the statistical technique and propose a system to detect abnormal behaviors of the device or abnormality based on the analysis results. The proposed system performs the first level abnormal detection by using previously entered data set, thereafter performs the second level anomaly detection according to the trust bound configured by using stored time series data based on time attribute or group attribute. Multi-level analysis is able to improve reliability and to reduce false positives as well through a variety of decision data set.

The Development of Remote Monitoring System for Storm Overflow Chamber Device (우수토실 일체형 하수유량조절장치 원격관리시스템 개발)

  • Jeon, In-Jae;Kim, Ki-Bong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.61-68
    • /
    • 2018
  • This paper propose the remote monitoring system using LoRa networks about storm overflow chamber, which is a device designed to discharge rainwater directly to a sewage treatment plant when it reaches a certain amount of rainfall during precipitation. In this system, when the information produced by the sensor is transmitted to the LoRa network server and updated, the application server can automatically receive data through the implemented communication interface. The application server carries out management functions of storm overflow chamber devices and subscription information, collects measured flow rate and opening-closing information, and provides statistical information using the collected data. The android app performs a firebase-based notification function to prompt the user of malfunctioning of the storm overflow chamber device.