Abstract
IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.
센서네트워크 센서노드의 위치정보는 기본적으로 센싱 데이터가 얻어진 위치를 알려주는 목적으로 사용되며 Context 기반 고차원 서비스를 제공하기 위한 가장 중요한 정보중 하나이다. 센서네트워크상에서 위치인식을 위해 다양한 방법들이 연구되고 제안되어 왔으며, 이러한 방법 중에 IEEE 802.15.4 센서네트워크의 물리 계층과 매체 접근 계층을 이용한 위치인식 방법에 관한 연구방법이 크게 대두되고 있다. IEEE 802.15.4 프로토콜은 장치간의 저가격, 저속의 무선 통신을 지향하기 때문에 구현에 있어서 고도화된 최적화가 중요한 요구사항이라 할 수 있다. 하지만 수신 신호의 세기를 가지고 센서 노드들의 위치를 계산하는 방법은 최적화 문제의 해를 구하기 위한 과정이기 때문에 많은 연산 량이 필요로 하게 되고, IEEE802.15.4를 지원하는 System-On-a-Chip (SoC)의 경우 8비트 마이크로 컨트롤러기반으로 설계되어 있다는 점을 고려하면, IEEE802.15.4 기반의 위치 인식 서비스를 위해서는 하드웨어에 기반을 둔 위치 인식 엔진의 필요성이 무엇보다 중요하다. 본 논문은 IEEE 802.15.4 물리계층에 기반을 둔 가중치 기반의 최대우도방법 위치인식기 하드웨어 구현에 관해 제안하고자 한다. 테스트 베드를 이용한 필드테스트 결과 제안하는 하드웨어 기반 가중치 방식의 위치 인식방법은 정확도에서 10% 정도의 개선과 함께 내장 마이크로 컨트롤러의 연산량 및 메모리 액세스를 30% 정도 감소시켜 시스템 전원소모를 줄일 수 있는 결과를 얻을 수 있었다.