• Title/Summary/Keyword: IoT (internet of things)

Search Result 1,917, Processing Time 0.029 seconds

Smoothing Algorithm Considering Server Bandwidth and Network Traffic in IoT Environments (IoT 환경에서 서버 대역폭과 네트워크 트래픽을 고려한 스무딩 알고리즘)

  • Lee, MyounJae
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.53-58
    • /
    • 2022
  • Smoothing is a transmission plan that converts video data stored at a variable bit rate into a constant bit rate. In the study of [6-7], when a data rate increase is required, the frame with the smallest increase is set as the start frame of the next transmission rate section, when a data tate decrease is required. the frame with the largest decrease is set as the start frame of the next transmission rate section, And the smoothing algorithm was proposed and performance was evaluated in an environment where network traffic is not considered. In this paper, the smoothing algorithm of [6-7] evaluates the adaptive CBA algorithm and performance with minimum frame rate, average frame rate, and frame rate variation from 512KB to 32MB with E.T 90 video data in an environment that considers network traffic. As a result of comparison, the smoothing algorithm of [6-7] showed superiority in the comparison of the minimum refresh rate.

Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education (지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.449-457
    • /
    • 2024
  • AIoT, the intelligent Internet of Things, refers to a technology that collects data measured by IoT devices and applies machine learning technology to create and utilize predictive models. Existing research on AIoT technology education focused on building an educational AIoT platform and teaching how to use it. However, there was a lack of case studies that taught the process of automatically creating and utilizing machine learning models from data measured by IoT devices. In this paper, we developed a case study using a machine learning model for AIoT technology education. The case developed in this paper consists of the following steps: data collection from AIoT devices, data preprocessing, automatic creation of machine learning models, calculation of accuracy for each model, determination of valid models, and data prediction using the valid models. In this paper, we considered that sensors in AIoT devices measure different ranges of values, and presented an example of data preprocessing accordingly. In addition, we developed a case where AIoT devices automatically determine what information they can predict by automatically generating several machine learning models and determining effective models with high accuracy among these models. By applying the developed cases, a variety of educational contents using AIoT, such as prediction-based object control using AIoT, can be developed.

Hybrid Tensor Flow DNN and Modified Residual Network Approach for Cyber Security Threats Detection in Internet of Things

  • Alshehri, Abdulrahman Mohammed;Fenais, Mohammed Saeed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.237-245
    • /
    • 2022
  • The prominence of IoTs (Internet of Things) and exponential advancement of computer networks has resulted in massive essential applications. Recognizing various cyber-attacks or anomalies in networks and establishing effective intrusion recognition systems are becoming increasingly vital to current security. MLTs (Machine Learning Techniques) can be developed for such data-driven intelligent recognition systems. Researchers have employed a TFDNNs (Tensor Flow Deep Neural Networks) and DCNNs (Deep Convolution Neural Networks) to recognize pirated software and malwares efficiently. However, tuning the amount of neurons in multiple layers with activation functions leads to learning error rates, degrading classifier's reliability. HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified Residual Networks) or Resnet CNNs were presented to recognize software piracy and malwares. This study proposes HTFDNNs to identify stolen software starting with plagiarized source codes. This work uses Tokens and weights for filtering noises while focusing on token's for identifying source code thefts. DLTs (Deep learning techniques) are then used to detect plagiarized sources. Data from Google Code Jam is used for finding software piracy. MRNs visualize colour images for identifying harms in networks using IoTs. Malware samples of Maling dataset is used for tests in this work.

Experimental Evaluation and Flexible Performance Improvement of IoT Middleware for Efficient Connectivity (사물간의 효율적인 연결을 위한 사물인터넷 미들웨어 실험 평가 및 성능 향상 방법)

  • Jeon, Soo Bin;Lee, Chung San;Han, Young Tak;Jung, In Bum
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.9
    • /
    • pp.385-396
    • /
    • 2017
  • Many IoT platforms have been proposed for various IoT devices, from low-end to high-end performance. We previously proposed a new IoT platform called MinT that supports the operation of the sensing devices and network communication. In the proposed platform, the things can flexibly connect to each other and efficiently share their information. Most IoT platforms, including the MinT, support thread pooling to quickly process requests. However, using a thread pool with a fixed thread count can cause network delay and inefficient energy consumption. In this paper, we propose an enhanced method to manage the thread pool efficiently by adjusting the number of threads every cycle to regulate the device's performance. In particular, we aim to improve the performance of the Interaction Thread Pool Group, which is responsible for analyzing, processing, and re-transmitting the received packets. The experiment shows that the improved method increases the average throughput by approximately 25% compared to the existing platforms. Finally, using the proposed method, the MinT can reduce the transmission delay and energy consumption of devices in the IoT environment.

Algorithms for Efficient Digital Media Transmission over IoT and Cloud Networking

  • Stergiou, Christos;Psannis, Kostas E.;Plageras, Andreas P.;Ishibashi, Yutaka;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In recent years, with the blooming of Internet of Things (IoT) and Cloud Computing (CC), researchers have begun to discover new methods of technological support in all areas (e.g. health, transport, education, etc.). In this paper, in order to achieve a type of network that will provide more intelligent media-data transfer new technologies were studied. Additionally, we have been studied the use of various open source tools, such as CC analyzers and simulators. These tools are useful for studying the collection, the storage, the management, the processing, and the analysis of large volumes of data. The simulation platform which have been used for our research is CloudSim, which runs on Eclipse software. Thus, after measuring the network performance with CloudSim, we also use the Cooja emulator of the Contiki OS, with the aim to confirm and access more metrics and options. More specifically, we have implemented a network topology from a small section of the script of CloudSim with Cooja, so that we can test a single network segment. The results of our experimental procedure show that there are not duplicated packets received during the procedure. This research could be a start point for better and more efficient media data transmission.

Coupled IoT and artificial intelligence for having a prediction on the bioengineering problem

  • Chunping Wang;Keming Chen;Abbas Yaseen Naser;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.127-140
    • /
    • 2023
  • The vibration of microtubule in human cells is the source of electrical field around it and inside cell structure. The induction of electrical field is a direct result of the existence of dipoles on the surface of the microtubules. Measuring the electrical fields could be performed using nano-scale sensors and the data could be transformed to other computers using internet of things (IoT) technology. Processing these data is feasible by artificial intelligence-based methods. However, the first step in analyzing the vibrational behavior is to study the mechanics of microtubules. In this regard, the vibrational behavior of the microtubules is investigated in the present study. A shell model is utilized to represent the microtubules' structure. The displacement field is assumed to obey first order shear deformation theory and classical theory of elasticity for anisotropic homogenous materials is utilized. The governing equations obtained by Hamilton's principle are further solved using analytical method engaging Navier's solution procedure. The results of the analytical solution are used to train, validate and test of the deep neural network. The results of the present study are validated by comparing to other results in the literature. The results indicate that several geometrical and material factors affect the vibrational behavior of microtubules.

Design and Implementation of Optimal Smart Home Control System (최적의 스마트 홈 제어 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

Link Budget Analysis of Communication System for Reliable WBAN (신뢰성있는 WBAN을 위한 통신 시스템의 링크 버짓 분석)

  • Roh, Jae-sung
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.584-588
    • /
    • 2019
  • Wireless body area network (WBAN) is a networking technology that enables early detection of abnormal health conditions, real-time medical monitoring, and telemedicine support systems. The internet of things (IoT) for healthcare, which has become an issue recently, is one of the most promising areas for improving the quality of human life. It must meet the high QoS requirements of the medical communication system like any other communication system. Therefore, the bit error rate (BER) threshold was chosen to accommodate the QoS requirements of the WBAN communication system. In this paper, we calculated BER performance of WBAN channel using IR-UWB PPM modulation and analyzed link budget and system margin of WBAN according to various system parameters.

A Study on Building a Test Bed for Smart Manufacturing Technology (스마트 제조기술을 위한 테스트베드 구축에 관한 연구)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.475-479
    • /
    • 2021
  • There are many difficulties in the applications of smart manufacturing technology in the era of the 4th industrial revolution. In this paper, a test bed was built to aim for acquiring smart manufacturing technology, and the test bed was designed to acquire basic technologies necessary for PLC (Programmable Logic Controller), HMI, Internet of Things (IoT), artificial intelligence (AI) and big data. By building a vehicle maintenance lift that can be easily accessed by the general public, PLC control technology and HMI drawing technology can be acquired, and by using cloud services, workers can respond to emergencies and alarms regardless of time and space. In addition, by managing and monitoring data for smart manufacturing, it is possible to acquire basic technologies necessary for embedded systems, the Internet of Things, artificial intelligence, and big data. It is expected that the improvement of smart manufacturing technology capability according to the results of this study will contribute to the effect of creating added value according to the applications of smart manufacturing technology in the future.