• Title/Summary/Keyword: IoT (internet of things)

Search Result 1,916, Processing Time 0.032 seconds

A Framework for Time Awareness System in the Internet of Things (사물인터넷에서 시각 정보 관리 체계)

  • Hwang, Soyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1069-1073
    • /
    • 2016
  • The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure. IoT is expected to offer advanced connectivity of devices, systems, and services that goes beyond machine-to-machine communications and covers a variety of protocols, domains, and applications. Key system-level features that IoT needs to support can be summarized as device heterogeneity, scalability, ubiquitous data exchange through proximity wireless technologies, energy optimized solutions, localization and tracking capabilities, self-organization capabilities, semantic interoperability and data management, embedded security and privacy-preserving mechanisms. Time information is a critical piece of infrastructure for any distributed system. Time information and time synchronization are also fundamental building blocks in the IoT. The IoT requires new paradigms for combining time and data. This paper reviews conventional time keeping mechanisms in the Internet and presents issues to be considered for combining time and data in the IoT.

IoT Roaming Service for Seamless IoT Service (무중단 IoT 서비스 제공을 위한 IoT 로밍서비스)

  • Ahn, Junguk;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1258-1269
    • /
    • 2020
  • The IoT(Internet of Things) service provides users with valuable services by collecting and analyzing data using Internet-connected IoT devices. Currently, IoT service platforms are accomplished by using edge computing to reduce the delay time required to collect data from IoT devices. However, if a user moves to another network with IoT device, the connection will be lost and IoT service will be suspended. To solve this problem, we proposes a service that automatically roaming IoT service when IoT device makes move. IoT roaming service provides a device automatic tracking management technique designed to continue receiving IoT services even if users move to other networks. To check if the proposed roaming service was effective, we implemented IoT roaming service and measured the data transfer time while move between networks along with devices while using IoT service. As a result, the average data transfer time was 124.62ms, and the average service interrupt time was 812.12ms. with this result, we can assume that the user could feel service interruption time very shortly and it will not affect the service experience. with IoT roaming service, we expect that it will present a method that stably providing IoT services even if user moves networks.

Vulnerabilities, Threats and Challenges on Cyber Security and the Artificial Intelligence based Internet of Things: A Comprehensive Study

  • Alanezi, Mohammed Ateeq
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.153-158
    • /
    • 2022
  • The Internet of Things (IoT) has gotten a lot of research attention in recent years. IoT is seen as the internet's future. IoT will play a critical role in the future, transforming our lifestyles, standards, and business methods. In the following years, the use of IoT in various applications is likely to rise. In the world of information technology, cyber security is critical. In today's world, protecting data has become one of the most difficult tasks. Different type of emerging cyber threats such as malicious, network based and abuse of network have been identified in the IoT. These can be done by virus, Phishing, Spam and insider abuse. This paper focuses on emerging threats, various challenges and vulnerabilities which are faced by the cyber security in the field of IoT and its applications. It focuses on the methods, ethics, and trends that are reshaping the cyber security landscape. This paper also focuses on an attempt to classify various types of threats, by analyzing and characterizing the intruders and attacks facing towards the IoT devices and its services.

Smart Services and Internet of Things

  • Sung-Byung Yang;Kyung Young Lee;Sunghun Chung
    • Asia pacific journal of information systems
    • /
    • v.29 no.3
    • /
    • pp.407-413
    • /
    • 2019
  • This editorial on 'Smart Services and Internet of Things (IoT)' focuses on the topics related to the applications of IoT to consumer products and services, which have become 'smarter' thanks to IoT. This special issue explores, in different ways, the phenomena of smart services and the role of IoT in business innovation across different contexts such as product-service system, car auction, tourism industry, communicating platform, online travel agency, self-service retail, and bike sharing. We hope that this special issue will provide a significant step forward in enabling researchers and practitioners to understand smart services and IoT.

A double-blockchain architecture for secure storage and transaction on the Internet of Things networks

  • Aldriwish, Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.119-126
    • /
    • 2021
  • The Internet of Things (IoT) applications are quickly spread in many fields. Blockchain methods (BC), defined as a distributed sharing mechanism, offer excellent support for IoT evolution. The BC provides a secure way for communication between IoT devices. However, the IoT environments are threatened by hacker attacks and malicious intrusions. The IoT applications security are faced with three challenges: intrusions and attacks detection, secure communication, and compressed storage information. This paper proposed a system based on double-blockchain to improve the communication transactions' safety and enhance the information compression method for the stored data. Information security is enhanced by using an Ellipse Curve Cryptography (ECC) considered in a double-blockchain case. The data compression is ensured by the Compressed Sensing (CS) method. The conducted experimentation reveals that the proposed method is more accurate in security and storage performance than previous related works.

An Approach for Applying Network-based Moving Target Defense into Internet of Things Networks

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.35-42
    • /
    • 2019
  • In this paper, we propose an approach to apply network-based moving target defense into Internet of Things (IoT) networks. The IoT is a technology that provides the high interconnectivity of things like electronic devices. However, cyber security risks are expected to increase as the interconnectivity of such devices increases. One recent study demonstrated a man-in-the-middle attack in the statically configured IoT network. In recent years, a new approach to cyber security, called the moving target defense, has emerged as a potential solution to the challenge of static systems. The approach continuously changes system's attack surface to prevent attacks. After analyzing IPv4 / IPv6-based moving target defense schemes and IoT network-related technologies, we present our approach in terms of addressing systems, address mutation techniques, communication models, network configuration, and node mobility. In addition, we summarize the direction of future research in relation to the proposed approach.

Development of Wireless Communication Educational Equipment for Internet of Things (IoT) (사물인터넷(IoT)을 위한 무선통신 교육장비 개발)

  • Kim, Han-jong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.321-326
    • /
    • 2021
  • Wireless communication is a core technology constituting the Internet of Things (IoT), but there is no suitable educational equipment to learn various wireless communication technologies used in the Internet of Things through practice. This paper deals with the development of advanced education and training equipment that can perform various IoT wireless communication practices. It uses an Arduino mega board as a device to control various sensors. As wireless network technologies to send and receive the sensing date wirelessly, it makes use of RFID/NFC and Bluetooth among WPAN technologies, WiFi among WLAN technologies and LoRa and 2.4GHz wireless transceiver among WWAN technologies. In addition, GPS, infrared communication, I2C communication, and SPI communication are organized so that various IoT wireless communication technologies can be learned through practice. In addition, since the educational equipment developed in this paper is equipped with two devices, it is designed to perform transmission and reception experiments for wireless network technology within the equipment.

A Survey of Trust Management in WSNs, Internet of Things and Future Internet

  • Chang, Kai-Di;Chen, Jiann-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.5-23
    • /
    • 2012
  • Nowadays, most researchers and manufacturers always pay attention on wireless sensor networks (WSNs) due to its potential applications in many regions such as military, industrial and civilian areas. WSNs are the basic components of Internet of Things (IoT) and the key to machine-to-machine communications and the future Internet. Also, the security is an essential element for deploying WSNs. Recently the concept of trust-based mechanism was proposed in WSNs such as traditional cryptographic and authentication mechanisms. However, there is lack a survey on trust management for WSNs, IoT even future Internet. In this paper, we discuss the concept and potential application areas of trust management for WSNs and IoT worlds. Furthermore, we survey different trust management issues (i.e., cluster, aggregation, reputation). Finally, future research directions with respect to trust management in WSNs and future IoT world are provided. We give not only simple WSNs for IoT environments but also a simulated bootstrap platform to provide the discussion of open challenges and solutions for deploying IoT in Future Internet.

Middleware API Design for CoAP Usage (CoAP 사용을 위한 미들웨어 API 설계)

  • Kwon, Hak;Ra, Younggook;Jo, JaeDeok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2017
  • Developing the TCP/IP standard IBA which is higher organization of IETF decided to attach the TCP/IP protocol stack to small things, such as sensor. This means small object is also considered as on of the communication node, it has symbolic meaning that expand smart object has all five layer. Under this background, IoT/WoT configure the intelligent network between objects based on the internet to communication was introduced. Things has own IP address on IoT environment and are smart object that a lot of people communicate over the internet on Application Layer. In other words, IoT is that smart object are commercialized space. According to the interest of IoT, IETF establish CoAP for use as IoT protocol. CoAP is expected that standard protocols created by things is connected to the Internet protocol that can be used within a constrained environment. Accordingly, in this paper, we proposed Middleware API that can manage and collect the data of objects that connected CoAP network.

System Design for Real-Time Data Transmission in Web-based Open IoT System (웹 기반 개방형 IoT 환경에서 실시간 데이터 전송을 위한 시스템 설계)

  • Phyo, Gyung-soo;Park, Jin-tae;Moon, Il-young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.562-567
    • /
    • 2016
  • IoT is attracting attention as the development of the Internet and the spread of smart devices are rapidly increasing worldwide. As IoT is integrated into everyday life, the market is getting bigger. So, experts predict that IoT devices will grow to more than one trillion in a decade. Techniques related to IoT are also being developed steadily, and studies are underway to develop IoT in various fields. However, vendors launching IoT services do not interact with data from other platforms. Therefore, it is limited to growing into a big market by facing the obstacle called the silo phenomenon. To solve this problem, web technology attracts attention. Web technology can interact with data regardless of platform, and it can not only develop various services using the data, but also reduce unnecessary costs for developers. In this paper, we have studied a web - based open IoT system that can transmit data independently in real time to the IoT platform.