• Title/Summary/Keyword: IoT (internet of things)

Search Result 1,917, Processing Time 0.026 seconds

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

A Study on the Regulation Improvement Measures for Activation of Internet of Things and Big Data Convergence (사물 인터넷과 빅데이터 융복합 활성화를 위한 규제 개선 방안에 관한 연구)

  • Kim, Ki-Bong;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.29-35
    • /
    • 2017
  • Korea has been showing a high interest in convergence centered on information and communication technologies for the past 10 years. However, with successful convergence of broadcasting and telecommunication sectors, successful convergence cases such as IPTV have been excluded. In some fields, The performance that citizens can experience is limited. In addition, the combination of the Internet of things and the big data shows that infinite data in the natural and social environment surrounding service users can be created and utilized to create better services. However, the division between departments and departments, And the limitations of policies and systems that can promote convergence of information and communication technologies. Therefore, in order to create new industries through the fusion of the Internet of things and big data, it is necessary to investigate what kind of inhibitory enzymes are present, to investigate the problems, to solve the problems, to develop technologies for activating the Internet and big data, And suggests ways to utilize the policy to promote convergence of related technologies.

Entity Authentication Scheme for Secure WEB of Things Applications (안전한 WEB of Things 응용을 위한 개체 인증 기술)

  • Park, Jiye;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.394-400
    • /
    • 2013
  • WoT (Web of Things) was proposed to realize intelligent thing to thing communications using WEB standard technology. It is difficult to adapt security protocols suited for existing Internet communications into WoT directly because WoT includes LLN(Low-power, Lossy Network) and resource constrained sensor devices. Recently, IETF standard group propose to use DTLS protocol for supporting security services in WoT environments. However, DTLS protocol is not an efficient solution for supporting end to end security in WoT since it introduces complex handshaking procedures and high communication overheads. We, therefore, divide WoT environment into two areas- one is DTLS enabled area and the other is an area using lightweight security scheme in order to improve them. Then we propose a mutual authentication scheme and a session key distribution scheme for the second area. The proposed system utilizes a smart device as a mobile gateway and WoT proxy. In the proposed authentication scheme, we modify the ISO 9798 standard to reduce both communication overhead and computing time of cryptographic primitives. In addition, our scheme is able to defend against replay attacks, spoofing attacks, select plaintext/ciphertext attacks, and DoS attacks, etc.

Recovery-Key Attacks against TMN-family Framework for Mobile Wireless Networks

  • Phuc, Tran Song Dat;Shin, Yong-Hyeon;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2148-2167
    • /
    • 2021
  • The proliferation of the Internet of Things (IoT) technologies and applications, especially the rapid rise in the use of mobile devices, from individuals to organizations, has led to the fundamental role of secure wireless networks in all aspects of services that presented with many opportunities and challenges. To ensure the CIA (confidentiality, integrity and accessibility) security model of the networks security and high efficiency of performance results in various resource-constrained applications and environments of the IoT platform, DDO-(data-driven operation) based constructions have been introduced as a primitive design that meet the demand of high speed encryption systems. Among of them, the TMN-family ciphers which were proposed by Tuan P.M., Do Thi B., etc., in 2016, are entirely suitable approaches for various communication applications of wireless mobile networks (WMNs) and advanced wireless sensor networks (WSNs) with high flexibility, applicability and mobility shown in two different algorithm selections, TMN64 and TMN128. The two ciphers provide strong security against known cryptanalysis, such as linear attacks and differential attacks. In this study, we demonstrate new probability results on the security of the two TMN construction versions - TMN64 and TMN128, by proposing efficient related-key recovery attacks. The high probability characteristics (DCs) are constructed under the related-key differential properties on a full number of function rounds of TMN64 and TMN128, as 10-rounds and 12-rounds, respectively. Hence, the amplified boomerang attacks can be applied to break these two ciphers with appropriate complexity of data and time consumptions. The work is expected to be extended and improved with the latest BCT technique for better cryptanalytic results in further research.

Pest Prediction in Rice using IoT and Feed Forward Neural Network

  • Latif, Muhammad Salman;Kazmi, Rafaqat;Khan, Nadia;Majeed, Rizwan;Ikram, Sunnia;Ali-Shahid, Malik Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.133-152
    • /
    • 2022
  • Rice is a fundamental staple food commodity all around the world. Globally, it is grown over 167 million hectares and occupies almost 1/5th of total cultivated land under cereals. With a total production of 782 million metric tons in 2018. In Pakistan, it is the 2nd largest crop being produced and 3rd largest food commodity after sugarcane and rice. The stem borers a type of pest in rice and other crops, Scirpophaga incertulas or the yellow stem borer is very serious pest and a major cause of yield loss, more than 90% damage is recorded in Pakistan on rice crop. Yellow stem borer population of rice could be stimulated with various environmental factors which includes relative humidity, light, and environmental temperature. Focus of this study is to find the environmental factors changes i.e., temperature, relative humidity and rainfall that can lead to cause outbreaks of yellow stem borers. this study helps to find out the hot spots of insect pest in rice field with a control of farmer's palm. Proposed system uses temperature, relative humidity, and rain sensor along with artificial neural network to predict yellow stem borer attack and generate warning to take necessary precautions. result shows 85.6% accuracy and accuracy gradually increased after repeating several training rounds. This system can be good IoT based solution for pest attack prediction which is cost effective and accurate.

Dynamic Resource Reservation for Ultra-low Latency IoT Air-Interface Slice

  • Sun, Guolin;Wang, Guohui;Addo, Prince Clement;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3309-3328
    • /
    • 2017
  • The application of Internet of Things (IoT) in the next generation cellular networks imposes a new characteristic on the data traffic, where a massive number of small packets need to be transmitted. In addition, some emerging IoT-based emergency services require a real-time data delivery within a few milliseconds, referring to as ultra-low latency transmission. However, current techniques cannot provide such a low latency in combination with a mice-flow traffic. In this paper, we propose a dynamic resource reservation schema based on an air-interface slicing scheme in the context of a massive number of sensors with emergency flows. The proposed schema can achieve an air-interface latency of a few milliseconds by means of allowing emergency flows to be transported through a dedicated radio connection with guaranteed network resources. In order to schedule the delay-sensitive flows immediately, dynamic resource updating, silence-probability based collision avoidance, and window-based re-transmission are introduced to combine with the frame-slotted Aloha protocol. To evaluate performance of the proposed schema, a probabilistic model is provided to derive the analytical results, which are compared with the numerical results from Monte-Carlo simulations.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.

Cross-Technology Localization: Leveraging Commodity WiFi to Localize Non-WiFi Device

  • Zhang, Dian;Zhang, Rujun;Guo, Haizhou;Xiang, Peng;Guo, Xiaonan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3950-3969
    • /
    • 2021
  • Radio Frequency (RF)-based indoor localization technologies play significant roles in various Internet of Things (IoT) services (e.g., location-based service). Most such technologies require that all the devices comply with a specified technology (e.g., WiFi, ZigBee, and Bluetooth). However, this requirement limits its application scenarios in today's IoT context where multiple devices complied with different standards coexist in a shared environment. To bridge the gap, in this paper, we propose a cross-technology localization approach, which is able to localize target nodes using a different type of devices. Specifically, the proposed framework reuses the existing WiFi infrastructure without introducing additional cost to localize Non-WiFi device (i.e., ZigBee). The key idea is to leverage the interference between devices that share the same operating frequency (e.g., 2.4GHz). Such interference exhibits unique patterns that depend on the target device's location, thus it can be leveraged for cross-technology localization. The proposed framework uses Principal Components Analysis (PCA) to extract salient features of the received WiFi signals, and leverages Dynamic Time Warping (DTW), Gradient Boosting Regression Tree (GBRT) to improve the robustness of our system. We conduct experiments in real scenario and investigate the impact of different factors. Experimental results show that the average localization accuracy of our prototype can reach 1.54m, which demonstrates a promising direction of building cross-technology technologies to fulfill the needs of modern IoT context.

TemG : A Geofence Platform with Time-Limited Property (TemG : 시한적 속성을 갖고 있는 지오펜스 플랫폼)

  • Eom, Young-Hyun;Choi, Young-Keun;Cho, Sungkuk;Jeon, Byungkook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.177-182
    • /
    • 2016
  • Geofence is a generic concept for describing geographic aspects of PoI(Point of Interest) enabling users to proactively induce context-based actions. However there is no need to maintain continuity when you reflect geofence in case of temporary events, accidents and isolation. Therefore we propose a geofence platform so-called TemG by adding time-limited information to support PoI. The proposed geofence platform TemG ensures the persistency and continuity of geofence. Furthermore, the proposed TemG can not only provide to automatically activate or deactivate the specified geofence during a period of timestamp but also support to the basic context-aware service knowing in/out in the zone. In the near future, the proposed TemG will be need to extend HPS(Hybrid Positioning System) for IoT(Internet of Things).

A study on the application of improved IoT- based smoke control system to lodging facilities fires (개선된 IoT기반 제연시스템의 숙박시설 적용에 관한 연구)

  • Kim, Suyong;Lee, Sangsoo;Lee, Sung-Hwa;Kim, Jin-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.113-118
    • /
    • 2021
  • The study is to provide safety to the occupants from smoke generated by fire occurring at midnight, and to provide a method for providing evacuation safety for a certain period of time even if the occupants are not aware of the fire. The goal of this study is to occur in small accommodation (floor area less than 1,000m2)It is to design a system that can provide ASET for more than 1 hour even if the occupant does not recognize the fire in late-night fire. The basic structure of the smoke-control system applicable to accommodation facilities was designed, and the expected effect was suggested when applied to small-scale domestic accommodation facilities through evacuation scenarios in accommodation facilities to which the system was applied.