• Title/Summary/Keyword: Inviscid Compressible Flow

Search Result 64, Processing Time 0.035 seconds

Matching inviscid and boundary layer method for incompressible and compressible flows (비압축성과 압축성 유동에 있어서 비점성 유동과 경계층 유동의 결합)

  • Sohn, Chang-Hyun;Moon, Su-Yeon;Lee, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1966-1971
    • /
    • 2003
  • Matching inviscid and boundary layer methods are developed for hypersonic flow with thick boundray layer. The new equations match all the boundary layer properties with a variation in the inviscid solution near the edge, except for the normal velocity. Computational comparison are performed for incompressible and compressible flows over a flat plate. Results from the present method are compared with Navier-Stokes solutions. The present results are in good agreement with Navier-Stokes solutions. They show that the new technique can provide improved heating rates and skin friction predictions for preliminary design of vehicles where shear layers and entropy layer swallowing are important.

  • PDF

An Aerodynamic Performance Analysis of the Low-Speed Airfoils in Seperated Flow Field (박리유동장에서 저속 익형의 공기역학적 성능해석)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the subsonic airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid-incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid-compressible flow analysis. The Goradia's integral method and the Truckenbrodt integral method are adopted for the boundary layer analysis of the laminar flow and the turbulent flow respectively. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. And the analysis of the seperated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered and its geometry expressed by the formula of Summey & Smith when no seperation occurs. A computational efficiency is verified by the comparison of the computational results with experimental data and by the shorter execution time.

  • PDF

Calculations of 3D Euler Flows around an Isolated Engine/Nacelle (비장착 엔진/나셀 형상에 대한 3차원 Euler 유동 해석)

  • Kim S. M.;Yang S. S.;Lee D. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.51-58
    • /
    • 1997
  • A reliable computational solver has been developed for the analysis of three-dimensional inviscid compressible flows around a nacelle of a high bypass ratio turbofan engine, The numerical algorithm is based on the modified Godunov scheme to allow the second order accuracy for space variables, while keeping the monotone features. Two step time integration is used not only to remove time step limitation but also to provide the second order accuracy in a time variable. The multi-block approach is employed to calculate the complex flow field, using an algebraic, conformal, and elliptic method. The exact solution of Riemann problem is used to define boundary conditions. The accuracy of the developed solver is validated by comparing its results around the isolated nacelle in the cruise flight regime with the solution obtained using a commercial code "RAMPANT. "

  • PDF

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

Additive Drag Computation of Supersonic Inlet by Numerical Analysis on Inviscid Flow (비점성 유동 해석을 통한 초음속 흡입구의 부가항력 산출)

  • Jung, Suk Young;Lee, Jung Hwa;Kim, Min Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.387-395
    • /
    • 2015
  • A technique for calculating the additive drag of the inlet in supersonic flow was studied using commercial CFD software, STAR-CCM+, which provides a efficient way of 3 dimensional flow analysis with polyhedron-shaped grid system. Three configurations were chosen and applied to the calculation with various flow conditions of two different free stream Mach No. and some mass flow ratios. Comparisons with results from wind tunnel test gave good agreements. Though computation were carried out with the inviscid and compressible flow around the supersonic inlet for the supercritical condition, ignoring the viscous effects is concluded to give little effects on the accuracy of the additive drag calculation and to make the calculation more efficient owing to less effort and time consumed for grid system build-up and for iteration because of less grid number and simpler boundary condition.

Performance Prediction of Eckardt's Impeller based on The Development of compressible Navier-Stokes Solver (압축성 유동 해석 프로그램 개발을 통한 Eckardt 임펠러의 성능 예측)

  • Kwak, Seung-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.223-232
    • /
    • 1998
  • To investigate the flow inside the centrifugal impeller, computer program which can solve Three-dimensional compressible turbulent flow has been developed. The Navier-Stokes equations were chosen as the governing equation for viscous flow while Euler equations for inviscid case. Time marching method was incorporated with the Flux Difference Splitting method suggested by Roe to capture the steep gradients such as a shock. For high order of accuracy, MUSCL approach was adopted while differentiable limiter to ensure TVD property. For turbulence closure, Baldwin- Lomax model was applied due to its simplicity. To demonstrate the capabilities of present program, several validation problems have been solved and compared with experiments and other available data. From the above calculations generally good agreements were obtained. Finally, the developed code was applied to Eckardt's impeller and the performance prediction was carried out. Some important aspects on boundary condition for successful simulation were discussed and the remedy was also introduced.

  • PDF

Implicit/Explicit Finite Element Method for Euler Flows Inside the Optimum Nozzle (내/외재적 유한요소법을 이용한 최대추력노즐의 설계해석)

  • Yoon W. S.;Kho H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • Optimum nozzle design exploiting the method of characteristic(M.O.C) has been in application as an efficient design methodology targeting a less weighted and short expansion nozzle. This paper treats the optimum nozzle design and the analysis of the inviscid compressible flow inside. Based on traditional Rao's method, the optimum nozzle design is coded with minor modifications for the identification of the control surface across which the mass flux should be conserved. Internal flow field is simulated numerically by M.O.C and implicit/explicit Taylor-Galerkin finite element method(F.E.M) with the aid of adaptive remeshing to capture the shock wave, hence improve the accuracy. Designed and calculated flow fields due to the separate analyses show that the mass flux predicted by optimum nozzle design with M.O.C is not conserved across the control surface and the sonic line should be located upstream of the nozzle throat. Rao's optimum nozzle design methodology exaggerates the momentum thrust and tends to overemphasize the engine performance loss.

  • PDF

Convergence Acceleration Methods for the Multigrid Navier-Stokes Computation (다중 격자 Wavier-Stokes 해석의 수렴성 증진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk;Choi Yun Ho;Lee Seungsoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.35-38
    • /
    • 2002
  • The convergence acceleration methods for the compressible Wavier-Stokes equations are studied ,which are multigrid method and implicit preconditioned multistage time stepping method. In this paper, the performance of implicit preconditioning methods are studied for the full-coarsening multigrid methods on the high Reynolds number compressible flow computations. The effect of numerical flux on the convergence are investigated for the inviscid and viscous calculations.

  • PDF

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.