• 제목/요약/키워드: Inverter control

검색결과 2,699건 처리시간 0.028초

상용인버터 구동 유도전동기의 마이크로 서지 및 노이즈 억제에 관한 대책 (Countermeasure on the Suppression of Micro Surge and Noise for a Induction Motor Driven by Commercial Inverter)

  • 김덕현;최정원
    • 조명전기설비학회논문지
    • /
    • 제22권10호
    • /
    • pp.111-117
    • /
    • 2008
  • 일반적으로 산업현장에서 널리 사용되는 유도전동기는 상용인버터를 이용하여 속도제어를 하게 된다. 상용인버터로 구동되는 유도전동기는 인버터의 고속 스위칭에 의한 마이크로 서지전압을 발생한다. 이러한 마이크로 서지는 전동기의 소손뿐 만아니라 PLC 제어계통에 있어서 노이즈 문제를 발생하며, 생산 활동에 막대한 지장을 초래하게 된다. 본 논문에서는 마이크로 서지의 발생 메커니즘을 살펴본 후 전동기 소손 방지를 위한 대책을 제시하고 인버터 출력단에 LCR 필터를 부착하여 실험하였으며 결과로 마이크로 서지전압이 저감됨을 확인하였다 또한 PLC 제어계통의 노이즈 억제에 대해 이론적 고찰을 통해 대책도 제시하였다.

4MW급 고압 인버터 시스템 개발 (Development of 4MW Class High Voltage Inverter System)

  • 박영민;한기준;최세경;정명길;이세현
    • 전력전자학회논문지
    • /
    • 제6권5호
    • /
    • pp.432-437
    • /
    • 2001
  • 본 연구는 새로이 개발된 3.3KV 4MW급의 3레벨 NPC구조의 전압형 대용량 인버터에 대한 것으로 Web 기반의 인버터 정보 관리 시스템(Inverter Information Management System)과 가상 운전 시뮬레이터가 부가된 것이다. 사용된 전동기 제어 알고리즘은 속도 센서 없이 동작 가능한 DTC(Direct Torque Control)기법으로 빠른 응답특성을 갖고 있다. IIMS는 운전상태 모니터링 및 Data 관리기능을 가지고 있으며 가상 운전시뮬레이터는 주 전원을 공급하지 않은 상태에서 시스템의 특성 검증 및 Tuning이 가능하다. 현재 이 제품은 신뢰성 검증을 위해 현장 시험 중에 있다.

  • PDF

유전알고리즘을 이용한 인버터 DC 저항점용접에서의 정전류퍼지제어기 최적화 (Optimization of Fuzzy Controller for Constant Current of Inverter DC Resistance Spot Welding Using Genetic Algorithm)

  • 유지영;윤상만;이세헌
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.99-105
    • /
    • 2010
  • Inverter DC resistance spot welding process has been very widely used for joining such as automotive body sheet metal. Because the lobe area of DC welding is larger than AC welding and DC welding has low electrode wear. So the use of Inverter DC resistance spot welding process has been further increased. And the application of high tensile steel is growing for light weight vehicle. To improve the weldability of high strength steel, the development of Inverter DC resistance spot welding system is more conducted. However, Inverter DC resistance spot welding system has a few problems. Current waveform is unstable and the expulsion has been occurred by characteristics of steel. In this study, inverter DC resistance spot welding system was made. And Fuzzy control algorithm was applied for constant current. The genetic algorithm was applied to optimize the fuzzy scaling factors, in order to optimize the fuzzy control.

Superheat Control of an Inverter-driven Heat Pump Using PI Control Algorithm

  • Park, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권2호
    • /
    • pp.106-115
    • /
    • 2002
  • The performance of an inverter-driven water-to-water heat pump with an electronic expansion valve (EEV) was measured as a function of compressor frequency, load conditions, and EEV opening. Based on the test results, a controller using proportional integral (PI) feedback or PI feedforward algorithm was designed and tested to investigate capacity modulation and transient response control of the system. Although the relation between superheat and EEV opening of the heat pump showed nonlinear characteristics, a control gain obtained at the rated frequency was applicable to various operating conditions without causing large deviations. When the simple PI feedback control algorithm was applied, a large overshoot of superheat and wet compression were observed due to time delay effects of compressor frequency. However, applying PI feedforward control scheme yielded better system performance and higher reliability, compared to the PI feedback algorithm.

A Scheme of EDTC Control using an Induction Motor Three-Level Voltage Source Inverter for Electric Vehicles

  • Zaimeddine, R.;Berkouk, E.M.;Refoufi, L.
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.505-512
    • /
    • 2007
  • The object of this paper is to study a new control structure for sensorless induction machines dedicated to electrical drives using a three-level voltage source inverter VSI-NPC. The amplitude and the rotating speed of the flux vector can be controlled freely. The scheme investigated is an Enhanced direct torque control "EDTC" for electric vehicle propulsion. The considered application imposes some constraints which are achieved in EDTC control (fast torque response, optimal switching logic, torque control at zero speed, and large speed control. The results obtained for an induction motor indicate superior performance over the FOC type without need for any mechanical sensor.

실시간 디지털 궤환 제어(Deadbeat 제어)에 의한 전류 제어형 PWM 인버터에 관한 연구 (Current Controlled PWN Inverter Using the Real-time Digital Feedback Control)

  • Lee, Jeong-Uk;Yoo, Ji-Yoon;Ahn, Ho-Gyun
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.259-267
    • /
    • 1994
  • This paper describes a current control of a single-phase PWM inverter. The proposed PWM inverter utilizes the instantaneous control method which is based on the real-time digital feedback control and the microprocessor-based deadbeat control. The deadbeat current controller is proposed to control the output current regardless of load component variations by the same method as voltage control. That is, in current control, with a very short sampling time and the successive feedback of the output current, the load current is mainly effected by the magnitude of load impedance rather than load component, the load current is mainly effected by the magnitude of load impedance rather than load component. Therefore, by treating the load as an impedance, the system's order is reduced and the instantaneous current control using the proposed deadeat controller is simplified.

슬라이딩 모드 기반의 가변이득을 가지는 직접전력제어를 이용한 계통연계형 인버터의 성능개선 (Performance Improvement of a Grid-Connected Inverter System using a Sliding-Mode Based Direct Power Control with a Variable Gain)

  • 이병섭;이준석;이교범
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.57-66
    • /
    • 2012
  • This paper proposes a performance improvement of grid-connected inverter system using sliding-mode based direct power control with a variable gain. The proposed control method determine variable gain of PI controller by using modeling at direct power control (DPC) applied to space vector modulation method. Also, this method use sliding-mode control to maintain excellent dynamic response of character of direct power control (DPC). The validity of the proposed algorithm are verified by simulations and experiments.

열차 추진제어장치의 알고리즘에 관한 연구 (A Study of Control Algorithm for Propulsion System)

  • 최재호;김형철
    • 한국철도학회논문집
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 2007
  • In this paper, control schemes are developed for a propulsion system(Converter/Inverter) in electrical train. A robust controller for PWM converter is proposed. The converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. This proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. Inverter system is controlled by vector control and slip frequency control. At low speed region, vector control scheme is applied to control instantaneous torque and slip frequency control is performed under overmodulation region and one pulse mode. Because output voltage of converter contains harmonics ripple at twice input ac line frequency, control scheme is developed to reduce the pulsating torque current. The performance of propulsion system will be verified by simulation and prototype experimental results.

비자성 부하 유도 가열용 Half-Bridge Inverter의 효율 향상에 대한 연구 (A High Efficient Half-Bridge Inverter for Induction-Heating Applications with Non-Magnetic Load)

  • 정진우;이병국;서범석;현동석;정윤철;박병욱;김정태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.303-305
    • /
    • 1996
  • A strategy that can maximize the efficiency of the inverter system for the non-magnetic material is proposed. Frequency control and variable DC-Link voltage control are compared and analyzed by the experimental results. The experimental results show the variable DC-Link voltage control is superior to the frequency control with respect to improve the efficiency of the inverter system. MOSFETs and IGBTs are used as switching devices and IGBTs are considerable as better switching devices for improving the efficiency of the inverter system.

  • PDF

An Optimal Damping Control Algorithm of Direct Two-level Inverter for Miniaturization and Weight Reduction of Auxiliary Power Supply on Railway Vehicle

  • Lee, Chang-hee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2335-2343
    • /
    • 2018
  • This paper proposes an optimal damping control algorithm of the DTI (Direct Two-level Inverter) to miniaturize and reduce the weight of auxiliary power supply for railway vehicles. The conventional auxiliary power supply for railway vehicles uses a DC-DC converter to maintain the inverter input power from the line voltage smoothly. The proposed topology does not use a DC-DC converter for reducing of manufacturing and maintenance costs. It also proposes a DTI topology removed damping resistors that generate ground signal noise in a certain period. At this time, a resonance phenomenon of DC-link voltage occurs due to variation of the inductive load, and a method of controlling the resonance phenomenon of DC-link voltage is required. In order to suppress the resonance phenomenon of the DC-link voltage, at a point before resonance occurs, this paper introduces an algorithm to suppress the resonance phenomenon of DC-link voltage by compensating the resonance component of the q axis voltage of the synchronous reference frame. The proposed algorithm verifies the effect through simulation and experiment.