• Title/Summary/Keyword: Inverter System

Search Result 2,788, Processing Time 0.033 seconds

A Study on Development of Three-Phase Inverter Using Single-Chip Microprocessor (싱글칩 마이크로 프로세서를 이용한 3상 인버터 개발에 관한 연구)

  • Kim, Ho-Jin;Park, Su-Young;hahm, Yeon-Chang;Shin, Woo-Seok;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.568-572
    • /
    • 1991
  • This paper describes the three-phase inverter system for 1/2[HP] induction servo motor, using TMS370C050 single-chip microprocessor. The Power MOSFETs are used for PWM inverter circuit because of the advantages such as less harmonic losses and smaller peak current, less torque ripples and noises. Single-chip microprocessor enables the whole controller to be simple and reduced size as well as to more stable and flexible. The basic structures are shown for the power circuit, including the protection and driving circuitry, and the control loops for inverter control functions. The experimental results are given for the prototype PWM inverter system.

  • PDF

Review of Multifunctional Inverter Topologies and Control Schemes Used in Distributed Generation Systems

  • Teke, Ahmet;Latran, Mohammad Barghi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.324-340
    • /
    • 2014
  • Recent developments in power electronics technology have spurred interest in the use of renewable energy sources as distributed generation (DG) generators. The key component in DG generators is a grid-connected inverter that serves as an effective interface between the renewable energy source and the utility grid. The multifunctional inverter (MFI) is special type of grid-connected inverter that has elicited much attention in recent years. MFIs not only generate power for DGs but also provide increased functionality through improved power quality and voltage and reactive power support; thus, the capability of the auxiliary service for the utility grid is improved. This paper presents a comprehensive review of the various MFI system configurations for single-phase (two-wire) and three-phase (three- or four-wire) systems and control strategies for the compensation of different power quality problems. The advances in practical applications and recent research on MFIs are presented through a review of nearly 200 papers.

NPC Type 3 Level Inverter Operation in Overmodulation Region (NPC형 3레벨 인버터 과변조영역운전)

  • Lee, Jae-Moon;Choi, Jae-Ho;Lee, Eun-Kyu;Yeom, Sang-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.194-197
    • /
    • 2007
  • This paper proposes a linearization technique for the 3 level NPC type inverter, which increases the linear control range of inverter up to the 6-step inverter. The overmodulation range is divided into two modes depending on the modulation index(MI), In mode I, the reference angles are derived from the Fourier series expansion of the reference voltage corresponds to the MI. In mode II, the holding angles are also derived in the same way. Therefore, it is possible to obtain the linear control and the maximized utilization of PWM inverter output voltage.

  • PDF

Multi-modulating Pattern - A Unified Carrier based PWM method In Multi-level Inverter - Part 2

  • Nho Nguyen Van;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.625-629
    • /
    • 2004
  • This paper presents a systematical approach to study carrier based PWM techniques (CPWM) in diode-clamped and cascade multilevel inverters by using a proposed named multi-modulating pattern method. This method is based on the vector correlation between CPWM and the space vector PWM (SVPWM) and applicable to both multilevel inverter topologies. A CPWM technique can be described in a general mathematical equation, and obtain the same outputs similarly as of the corresponding SVPWM. Control of the fundamental voltage, vector redundancies and phase redundancies in multilevel inverter can be formulated separately in the CPWM equation. The deduced CPWM can obtain the full vector redundancy control, and fully utilize phase redundancy in a cascade inverter In this continued part, it will be deduced correlation between CPWM equations in multi-carrier system and single carrier system, present the mathematical model of voltage source inverter related to the common mode voltage and propose a general algorithm for multi-modulating modulator. The obtained theory will be demonstrated by simulation results.

  • PDF

A Development of Efficient Power Conversion Technology for Reduction of Power Equipment (전원설비 저감을 위한 고효율 전력변환기술 개발)

  • Koo, Myoung-Wan;Lee, Woo-Won;Lim, Kye-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.142-144
    • /
    • 2008
  • The Former High Efficiency Inverter(the power restoration process) system process has advantage which is the energy reduction rather than the Former Inverter(the resistence damping process), However, under repair and remodeling, the power facilities capacity is not easy to increase that the former High Efficiency Inverter needs to increase the Power Facilities Capacity of 20~30% than the Inverter(the resistence damping process) so Therefore we are going to suggest the system which is not going to make an increase the power facilities capacity and is applicable the High Efficiency Inverter.

  • PDF

Loss Analysis of Pulse Type Inverter Circuit for PLS (PLS용 펄스형 인버터 회로의 손실분석)

  • Jung Yong-Chae;Jung Yun-Chul;Kim Eui-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.146-148
    • /
    • 2006
  • The aim of the paper is to design the PLS(Plasma Lighting System) driving inverter circuit with optimal efficiency. In general, it is known that the PLS driven by a pulse has a higher light-conversion efficiency. There are the Class-E type resonant inverter and the semi-bridge inverter as a circuit which can make a pulse with low duty ratio. In this paper, we analyze the losses of the above two circuits. To verify the loss analysis, the inverter circuit with 220V 380W input consumption is manufactured and tested. Throughout the experimental results, the high efficiency PLS system has confirmed.

  • PDF

A Novel Filter Design for Output LC Filters of PWM Inverters

  • Kim, Hyo-Sung;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.74-81
    • /
    • 2011
  • The cutoff frequency of the output LC filters of PWM inverters limits the control bandwidth of the converter system while it attenuates voltage ripples that are caused by inverter switching activities. For a selected cutoff frequency of an output LC filter, an infinite number of L-C combinations is possible. This paper analyses the characteristics of output LC filters for PWM inverters terms of the L-C combinations. Practical circuit conditions such as no-loads, full resistive-loads, and inductive-load conditions are considered in the analysis. This paper proposes a LC filter design method for PWM inverters considering both the voltage ynamics and he inverter stack size. An experimental PWM inverter system based on the proposed output LC lter design uideline is built and tested.

Fault Diagnosis and Neutral Point Voltage Control Under the Switch Fault in NPC 3-Level Voltage Source Inverter (NPC 3-레벨 인버터의 스위치 고장시 고장 진단과 중성점 불평형 전압 제어)

  • Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok;Son Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.231-237
    • /
    • 2005
  • Many conventional multi-level inverters have detected switching faults by using the over voltage and current. However, fault detection of the switching elements is very difficult because the voltage and current due to each switching fault decrease more than the normal operation. Moreover, the dc-link unbalancing voltage causes a serious problem in the safety and reliability of system when the 3-level inverter faults occur Therefore, this paper proposes the simple fault diagnose method and the neutral-point-voltage control method that can protect the 3-level inverter system from the unbalancing voltage of the do-link capacitors when the faults of switching elements occur in the 3-level inverter that is very efficient in ac motor drives of the high voltage and high power applications. Through experiment results, the validity of the proposed method is demonstrated.

A Study on High Efficiency for Grid-connected Modular Photovoltaic Power Conversion System (계통 연계 모듈형 태양광 전력변환장치 고효율화에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.36-44
    • /
    • 2014
  • The conventional central photo voltaic inverters have several problems. First, shadow problem in each solar panel, and high DC voltage problem from each panel because of concentration to one central inverter. Therefore, module integrated inverter is proposed to solve these problems. The inverter should be small and cost effective. The cost and size in the inverter depend on the inductor. So the switching frequency should be increased to reduce the inductor and total size, but there is a problem in efficiency because of the losses in turn-on and turn-off. In the paper, the critical conduction mode(CRM) switching method is adopted to reduce the switching loss and interleaving method is proposed to increase the efficiency in Flyback converter. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype system rated at 200W.

SiC Motor Drive for Elevator System (엘리베이터 시스템을 위한 SiC 권상기 드라이브)

  • Gwon, Jin-Su;Moon, Seok-Hwan;Kim, Ju-Chan;Lee, Joon-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2019
  • With the recent emphasis on the importance of energy conservation, studies on high-efficiency elevator systems are being continuously conducted. Therefore, pulse width modulation converters are commonly used in traction drives on elevator systems. Wide bandgap devices have been increasingly commercialized, and their application to power conversion systems, such as renewable and energy storage system, has been gradually increasing. In this study, a SiC inverter for an elevator traction drive is investigated. In particular, an inverter is designed to minimize stray and parasitic inductance. Input and output filters are designed by considering switching frequency. The designed SiC inverter reduces volume by approximately 32% compared with that of a Si inverter, and power converter efficiency is over 98.8%.