• Title/Summary/Keyword: Inverted V (chevron) braced steel frames

Search Result 3, Processing Time 0.017 seconds

Staticand Dynamic Design of Zipper Columns in Inverted V Braced Steel Frames (역V형 철골 중심가새골조의 정적/동적 지퍼기둥.설계법)

  • Lee Cheol-Ho;Kim Jung-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.733-740
    • /
    • 2006
  • Inverted V (or chevron) braced steel frames have been seen as being highly prone to soft story response once the compression brace buckles under earthquake loading. To salvage chevron braced frames. the concept of the zipper column was proposed many years ago such that the zipper column can redistribute the inelastic demand over the height of the building. However. rational design method for the zipper column has not been established yet. In this paper, a new dynamic design method for the zipper column was proposed by combining the refined physical braced model and modal pushover analysis. Inelastic dynamic analysis conducted on 6 story building model showed that the proposed method was more superior to the existing static design method and was very effective in improving seismic performance of chevron braced steel frames.

  • PDF

Inelastic Behavior and Seismic Retrofit of Inverted V Braced Steel Frames (역V형 철골 가새골조의 비탄성거동 및 내진성능향상 방안에 관한 연구)

  • Kim, Nam Hoon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.571-578
    • /
    • 2003
  • An effective seismic retrofit scheme for inverted V braced (or chevron type) steel frames was proposed by studying the redistribution of forces in the post-buckling range. The steel frames with chevron bracing are highly prone to soft story response once the compression brace buckles under earthquake loading. This paper shows that the seismic performance of such frames could be significantly improved by supplying tie bars to redistribute the inelastic deformation demand over the height of the building. A practical design method of the retrofit tie bars was also proposed by considering the sequence of buckling occurrence.

Seismic design rules for ductile Eurocode-compliant two-storey X concentrically braced frames

  • Costanzo, Silvia;D'Aniello, Mario;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.273-291
    • /
    • 2020
  • Two-storey X-bracings are currently very popular in European practice, as respect to chevron and simple X bracings, owing to the advantages of reducing the bending demand in the brace-intercepted beams in V and inverted-V configurations and optimizing the design of gusset plate connections. However, rules for two-storey X braced frames are not clearly specified within current version of EN1998-1, thus leading to different interpretations of the code by designers. The research presented in this paper is addressed at investigating the seismic behaviour of two-storey X concentrically braced frames in order to revise the design rules within EN1998-1. Therefore, five different design criteria are discussed, and their effectiveness is investigated. With this aim, a comprehensive numerical parametric study is carried out considering a set of planar frames extracted from a set of structural archetypes that are representative of regular low, medium and high-rise buildings. The obtained results show that the proposed design criteria ensure satisfactory seismic performance.