• Title/Summary/Keyword: Inverted Pendulum Model

Search Result 139, Processing Time 0.029 seconds

Indirect Adaptive Regulator Design Based on TSK Fuzzy Models

  • Park Chang-Woo;Choi Jun-Hyuk;Sung Ha-Gyeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • In this paper, we have proposed a new adaptive fuzzy control algorithm based on Takagi-Sugeno fuzzy model. The regulation problem for the uncertain SISO nonlinear system is solved by the proposed algorithm. Using the advanced stability theory, the stability of the state, the control gain and the parameter approximation error is proved. Unlike the existing feedback linearization based methods, the proposed algorithm can guarantee the global stability in the presence of the singularity in the inverse dynamics of the plant. The performance of the proposed algorithm is demonstrated through the problem of balancing and swing-up of an inverted pendulum on a cart.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

Desing of a Controller for Rod Balancing System

  • Kim, Sang-Gyu;An, Jung-Hun;Hong, Sung-Hun;Kang, Mun-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.4-66
    • /
    • 2001
  • In this paper we have fabricated the two-dimensional Rod Balancing System which expands conventional one-dimensional inverted pendulum control system and designed its controller. The X-axis cart and Y-axis bar of the Rod Balancing System, which is composed of X-Y table, are actuated through timing belt by each of two geared DC motors, and the rod mounted on a X-axis cart can be brought to the desired position and maintained in a vertical position by motor-control. For the control of the Rod Balancing System, we used a fuzzy logic controller that is an approach to systems control when the exact mathematical model of the plant is unknown or the mathematical model is too complex to understand.

  • PDF

TSK Fuzzy Model Based Hybrid Adaptive Control of Nonlinear Systems (비선형 시스템의 TSK 퍼지모델 기반 하이브리드 적응제어)

  • Kim, You-Keun;Kim, Jae-Hun;Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.211-216
    • /
    • 2004
  • In this thesis, we present the Takagi-Sugeno-Kang (TSK) fuzzy model based adaptive controller and adaptive identification for a general class of uncertain nonlinear dynamic systems. We use an estimated model for the unknown plant model and use this model for designing the controller. The hybrid adaptive control combined direct and indirect adaptive control based on TSK fuzzy model is constructed. The direct adaptive law can be showed by ignoring the identification errors and fails to achieve parameter convergence. Thus, we propose an TSK fuzzy model based hybrid adaptive (HA) law combined of the tracking error and the model ins error to adjust the parameters. Using a Lyapunov synthesis approach, the proposed hybrid adaptive control is proved. The hybrid adaptive law (HA) is better than the direct adaptive (DA) method without identifying the model ins error in terms of faster and improved tracking and parameter convergence. In order to show the applicability of the proposed method, it is applied to the inverted pendulum system and the performance is verified by some simulation results.

  • PDF

Dynamic Trajectory Control of a Biped Robot with Curved Soles

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.225-230
    • /
    • 2003
  • This paper proposes a desired trajectory and a control algorithm for a biped robot with curved soles. Firstly, we derived the desired trajectory from a model called the Moving Inverted Pendulum Mode (MIPM) of which a contact point of the foot is moving in the horizontal direction. A biped robot with curved soles is under-actuated system, because it has one contact point with the ground during the single supporting phase. Therefore, to solve the under-actuated problem, we changed control variables, used modified dynamic equations and used the computed torque control. The simulation results show that a biped robot with curved soles walks stably. Also, fast walking and natural motion of a biped robot can be implemented.

  • PDF

A review on numerical models and controllers for biped locomotion over leveled and uneven terrains

  • Varma, Navaneeth;Jolly, K.G.;Suresh, K.S.
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • The evolution of bipedal robots was the foundation stone for development of Humanoid robots. The highly complex and non-linear dynamic of human walking made it very difficult for researchers to simulate the gait patterns under different conditions. Simple controllers were developed initially using basic mechanics like Linear Inverted Pendulum (LIP) model and later on advanced into complex control systems with dynamic stability with the help of high accuracy feedback systems and efficient real-time optimization algorithms. This paper illustrates a number of significant mathematical models and controllers developed so far in the field of bipeds and humanoids. The key facts and ideas are extracted and categorized in order to describe it in a comprehensible structure.

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

An Analytical Walking Pattern Generation for a Biped Robot (이족 보행 로봇을 위한 해석적 보행 패턴 생성)

  • Hong, Seok-Min;Oh, Yong-Hwan;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1937-1938
    • /
    • 2006
  • 최근 들어 안정적인 보행 패턴 생성을 위해서 많은 방법들이 제안 되고 있다. 대부분의 논문에서 주기적인 보행에 대한 연구는 이루어지고 있으나 첫 보행 구간과 마지막 보행 구간에 대한 분석은 이루어지지 않고 있다. 본 논문은 첫 보행 구간과 마지막 보행 구간에 대한 분석을 통해 기존의 역 진자 모델(Inverted pendulum model)을 기반으로 부드러운 무게 중심의 궤적을 생성하는 해석적 방법을 제안한다. 이를 위해 먼저 정현파 함수를 이용해 영 모멘트 위치(ZMP, Zero Moment Point) 궤적을 설계한다. 영 모멘트 위치 궤적 설계 시 첫 보행 구간과 마지막 보행 구간에 대해 영 모멘트 위치와 무게 중심 간의 비 최소 위상(non-minimum phase) 시스템의 특성을 이용한다. 제안된 방법을 이용하여 주기적인 보행 구간 및 첫 보행 구간과 마지막 보행 구간에서 부드러운 무게 중심 궤적이 생성됨을 시뮬레이션을 통해 구현하여 제안된 방법의 유효성을 보인다.

  • PDF

Design of nonlinear system controller based on radial basis function network (Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

On-line System Identification using State Observer

  • Park, Duck-Gee;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2538-2541
    • /
    • 2005
  • This paper deals one of the methods of system identification, especially on-line system identification in time-domain. The algorithm in this study needs all states of the system as well input to it for system identification. In this reason, Kalman filter is used for state estimation. But in order to implement a state estimator, the fact that a system model must be known is logical contradiction. To overcome this, state estimation and system parameter estimation are performed simultaneously in one sample. And the result of the system parameter estimation is used as basis to state estimation in next sample. On-line system identification comes, in every sample by performing both processes of state estimation and parameter estimation that are related mutually and recursively. This paper demonstrates the validity of proposed algorithm through an example of an unstable inverted pendulum system. This algorithm can be useful for on-line system identification of a system that has fewer number of measurable output than system order or number of states.

  • PDF