• Title/Summary/Keyword: Inverse Theory

Search Result 265, Processing Time 0.022 seconds

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.685-688
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

A drive-by inspection system via vehicle moving force identification

  • OBrien, E.J.;McGetrick, P.J.;Gonzalez, A.
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.821-848
    • /
    • 2014
  • This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.

Stochastic Model for Unification of Stereo Vision and Image Restoration (스테레오 비젼 및 영상복원 과정의 통합을 위한 확률 모형)

  • Woo, Woon-Tak;Jeong, Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.37-49
    • /
    • 1992
  • The standard definition of computational vision is a set of inverse problems of recovering surfaces from images. Thus the common characteristics of the most early vision problems are ill-posed. The main idea for solving ill-posed problems is to restrict the class of admissible solutions by introducing suitable a priori knowledge. Standard regurarization methods lead to satisfactory solutions of early vision problems but cannot deal effectively and directly with a few general problems, such as discontinuity and fusion of information from multiple modules. In this paper, we discuss limitations of standard regularization theory and present new stochastic method. We will outline a rigorous approach to overcome part of ill-posedness of image restoration, edge detection, and stereo vision problems, based on Bayes estimation and MRF(Markov random field) model, that effectively deals with the problems. This result makes one hope that this framework could be useful in the solution of other vision problems.

  • PDF

Feedforward Input Signal Generation for MIMO Nonminimum Phase Autonomous System Using Iterative Learning Method (반복학습에 의한 MIMO Nonminimum Phase 자율주행 System의 Feedforward 입력신호 생성에 관한 연구)

  • Kim, Kyongsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.204-210
    • /
    • 2018
  • As the 4th industrial revolution and artificial intelligence technology develop, it is expected that there will be a revolutionary changes in the security robot. However, artificial intelligence system requires enormous hardwares for tremendous computing loads, and there are many challenges that need to be addressed more technologically. This paper introduces precise tracking control technique of autonomous system that need to move repetitive paths for security purpose. The input feedforward signal is generated by using the inverse based iterative learning control theory for the 2 input 2 output nonminimum-phase system which was difficult to overcome by the conventional feedback control system. The simulation results of the input signal generation and precision tracking of given path corresponding to the repetition rate of extreme, such as bandwidth of the system, shows the efficacy of suggested techniques and possibility to be used in military security purposes.

Wavenumber correlation analysis of satellite magnetometer observations

  • Kim, Jeong-Woo;Kim, Won-Kyun;Kim, Hye-Yun
    • Proceedings of the KSEEG Conference
    • /
    • 2000.04b
    • /
    • pp.311-313
    • /
    • 2000
  • Identifying anomaly correlations between data sets is the basis for rationalizing geopotenial interpretation and theory. A procedure between the two or more geopotential data sets. Anomaly features that show direct, inverse, or no correlationsbetween the data may be separated by applying filters in the frequency domains of the data sets. The correlation filter passes or rejects wavenumbers between co-registered data sets based on the correlation coefficient between common wavenumbers as given by the cosine of their phase difference. This study includes as example of Magsat magnetic anomaly profile that illustrates the usefulness of the procedure for extracting correlative features between the sets.

  • PDF

Homing Guidance Law for Alleviating Sensitivity to Initial Heading Errors (초기 헤딩오차 민감도 완화 호밍 유도법칙)

  • Lee, Jin-Ik;Jeon, In-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper, a new guidance law to reduce sensitivity to the initial heading errors is proposed. In order for shaping the input weights over the flight, we introduce the distribution functions expressed in terms of time-to-go and its inverse term. By applying the optimal control theory with the synthesized weights, the homing guidance law is derived. Also the characteristics of the proposed law are examined. Various computer simulations show the good performance of the proposed guidance.

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Kim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.365-368
    • /
    • 1998
  • In this research project two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.

A class of accelerated sequential procedures with applications to estimation problems for some distributions useful in reliability theory

  • Joshi, Neeraj;Bapat, Sudeep R.;Shukla, Ashish Kumar
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • This paper deals with developing a general class of accelerated sequential procedures and obtaining the associated second-order approximations for the expected sample size and 'regret' (difference between the risks of the proposed accelerated sequential procedure and the optimum fixed sample size procedure) function. We establish that the estimation problems based on various lifetime distributions can be tackled with the help of the proposed class of accelerated sequential procedures. Extensive simulation analysis is presented in support of the accuracy of our proposed methodology using the Pareto distribution and a real data set on carbon fibers is also analyzed to demonstrate the practical utility. We also provide the brief details of some other inferential problems which can be seen as the applications of the proposed class of accelerated sequential procedures.

Fast Algorithms for Computing Floating-Point Reciprocal Cube Root Functions

  • Leonid Moroz;Volodymyr Samotyy;Cezary Walczyk
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.84-90
    • /
    • 2023
  • In this article the problem of computing floating-point reciprocal cube root functions is considered. Our new algorithms for this task decrease the number of arithmetic operations used for computing $1/{\sqrt[3]{x}}$. A new approach for selection of magic constants is presented in order to minimize the computation time for reciprocal cube roots of arguments with movable decimal point. The underlying theory enables partitioning of the base argument range x∈[1,8) into 3 segments, what in turn increases accuracy of initial function approximation and decreases the number of iterations to one. Three best algorithms were implemented and carefully tested on 32-bit microcontroller with ARM core. Their custom C implementations were favourable compared with the algorithm based on cbrtf(x) function taken from C <math.h> library on three different hardware platforms. As a result, the new fast approximation algorithm for the function $1/{\sqrt[3]{x}}$ was determined that outperforms all other algorithms in terms of computation time and cycle count.