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Abstract 
In this article the problem of computing floating-point reciprocal 
cube root functions is considered. Our new algorithms for this task 
decrease the number of arithmetic operations used for computing  
1/√𝑥

య . A new approach for selection of magic constants is 
presented in order to minimize the computation time for reciprocal 
cube roots of arguments with movable decimal point. The 
underlying theory enables partitioning of the base argument range 

x∈[1,8) into 3 segments, what in turn increases accuracy of initial 
function approximation and decreases the number of iterations to 
one. Three best algorithms were implemented and carefully tested 
on 32-bit microcontroller with ARM core. Their custom C 
implementations were favourable compared with the algorithm 
based on cbrtf(x) function taken from C <math.h> library on three 
different hardware platforms. As a result, the new fast 
approximation algorithm for the function 1/√𝑥

య  was determined 
that outperforms all other algorithms in terms of computation time 
and cycle count. 
Keywords: 
floating-point, cube root, inverse cube root, Newton-Raphson, 
Householder. 

 
1. Introduction 
 

The demand for fast numerical computing of 
mathematical functions such as logarithm, square and cube 
roots, reciprocal and trigonometric functions is fast growing 
in such application areas as scientific computations, digital 
signal processing, multimedia, geometry and 3D graphics, 
thermodynamics, mobile robot navigation, system security, 
machine learning etc. Both software and hardware 
algorithms and their implementations are of interest. Many 
Floating-Point Units have implemented arithmetic 
operations in hardware making them extremely fast and 
efficient. Unfortunately, there are only a few 
implementations of cube root function in hardware, and 
they are mainly deployed in Field Programmable Gate 
Arrays (FPGAs). Because of its computation complexity, a 
cube root is difficult to implement even in FPGAs. 

Calculating the cube root was of interest to 
mathematicians since ancient times. Babylonians, Greeks, 
Chinese, and Hindus were looking for an efficient method 
for calculating the cube root as well as the reciprocal cube 
root [1]. However, the methods they proposed difficult to 

implement conveniently in a computer architecture, so 
computer algorithms do it in a completely different way 
than we do by manually calculating the cube root. 

Long Division Method (LDM) is a technique we 
typically use to calculate manually the cube root of a 
number [2]. Although the LDM method gives the best 
possible result for any computed digit when compared to 
modern numerical methods, so far no one successfully 
implemented this method numerically. Usually for 
numerical computation of the cube root, we use 
approximation or estimation methods based on the Newton-
Raphson algorithm, Halley algorithm or their variants 
including the magic number approach. Approximation 
algorithms, in each iteration, bring the root closer to the 
specified precision and require dividing the number by the 
newly approximated root. However, each iteration performs 
division operations that take longer than adding or 
subtracting.  Additionally, approximation algorithms have 
problems in finding the cube root of a non-perfect cube 
number with preferred precision and barely operate with 
large numbers [3]. Alternatively, cube roots can be also 
calculated using digit-by-digit fashion type of algorithms, 
such as non-restoring algorithm [4], [5], which are more 
suitable for ASIC and FPGA implementations [6],[7]. 

Considering all these factors, it is clear that designing an 
efficient algorithm to perform a cube root and reciprocal 
cube root calculation is a difficult task, but in many 
scientific applications it is an essential factor for ensuring 
high performance.  

The quick calculation of cube root and reciprocal cube 
root using the magic constant was recently discussed in [8]. 
The proposed approach was based on the method of the 
magic constant in the single precision format – IEEE Std 
754, and approximations of the cube root for an integer 
through operations that use the optimized iteration method 
based on Newton-Raphson or Householder algorithms. 
Even though the presented methods were efficient and fast, 
we would like to present in this paper new algorithms for 
reciprocal cube root computation which extend and 
improve the preceding approach. 

The outline of this paper is as follows.  In the next 
section we describe the background information on the 
approximation method proposed in [8]. Section 3 brings all 
the necessary theory and the main results of the article.  In 
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section 4, we report the experimental results related to the 
performance of investigated algorithms on 32-bit 
STM32F767ZIT6 microcontroller produced by 
STMicroelectronics. We also assess our algorithms and 
their implementation parameters for CPU, GPU and IPU 
platforms, and expose performance evaluation of speed and 
accuracy for different types of computer architectures. 
Finally, section 5 briefly sums up several conclusions. 

 
 

2. Basic Concept  
 

Let us recall after [8] the basic theory and results 
related to reciprocal cube root approximation. The initial 
approximation of the function 31 /y x  is denoted by 0y . 

It is known that the behaviour of the relative error in 
calculating 𝑦଴ in the whole range of normalized numbers 
with a floating point can be described by its behaviour for 

[1,8)x . In this range there are four piecewise linear 

approximations of the function 
0 01 02 03 04y y y y y{ , , , } :  

   y x t x01

5 1 1

6 6 24
, [1,2);

 
(1) 

   y x t x02

2 1 1

3 12 24
, [2,4);

 
(2) 

   y x t x t03

1 1 1

2 24 24
, [4, )

 
(3) 

   y x t x t04

1 1 1

2 48 48
, [ ,8);

 
(4) 

where:  
4 12 6R mt m N   ;  

     R m m
m N R N R1 1 , 

R
m 0  – is the fractional part of 

the mantissa of the magic constant R; 
𝑁௠ – is the floating point precision of computations. 

The maximum relative error of such analytical 
approximations does not exceed 1 2

m
N/ ( )  for single 

precision 
232mN  .  

The next step of the approximation increases the 
accuracy of calculations of the first iteration without 
increasing the higher order of the iteration patterns - the first 

order convergence by Newton–Raphson method is followed 
by the Householder method of higher orders of convergence. 

The method presented above was a basis for 
development algorithms presented in [8]. The best 
constructed algorithm for approximation of reciprocal cube 
root function i.e. Algorithm 5 (InvCbrt21) shall be a 
reference point for evaluation of two new algorithms in 
section 4.  

 
3.  The theoretical background and new algorithms 

 

On the background given in previous section our new 
methods for computing reciprocal cube root can be 

developed. Let's now divide the interval [1, 8)x  into 

three segments, where the i-th segment equals: [1, 2) when 
i=1, [2, 4) when i =2, and [4, 8) when i =3. In contrary to 
[8], in each segment we assume only two initial linear 
approximations of the reciprocal cube root function. The 
condition must be met that the relative errors of both 
adjacent initial linear approximations for each segment 
have the shape shown 

in Figure 1. 

 
 

 

Here we have two points of positive maximum values mix  

and ( 1)m ix   and one contact point of diagrams for both 

errors t ix . This is the point of maximum negative relative 

error value: 

𝛿଴௜୫୧୬ ൌ  െ𝛿଴௜୫ୟ୶ ൌ െ𝛿଴ሺ௜ାଵሻ୫ୟ୶ ,   (5) 

which does not depend on the location of the errors on the 
y axis, where 𝛿଴௜ ൌ 𝑦଴௜ √𝑥

య െ 1, i=1,2,3. 

Fig. 1. Expected shape of relative errors for piecewise 
linear approximation of the function 1/cbrt(x)   

𝛿଴௜୫ୟ୶ 𝛿଴ሺ௜ାଵሻ୫ୟ୶ 

𝛿଴௜୫୧୬ 
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In this case, the lowest range of relative errors will occur. 
Now we need to find the values of the magic constants for 
each segment that will provide this minimum range of 
relative errors. In the interval  
x∈ [1,8) there are three pairs of (adjacent) errors: 

𝛿଴ଵ and 𝛿଴ଶ, 𝑥 ∈ ሾ1,2ሻ, 

𝛿଴ଶ and 𝛿଴ଷ, 𝑥 ∈ ሾ2,4ሻ, 

𝛿଴ଷ and 𝛿଴ସ, 𝑥 ∈ ሾ4,8ሻ. 

On the basis of experimental studies, it was shown that such 
error combinations are possible for the following magic 
constants 

𝑅ଵ=0x543bxxxx, 𝑅ଶ=0x5466xxxx, 𝑅ଷ=0x5491xxxx. 

For the obtained values of the magic constants, the 
equations of the corresponding initial approximations of the 
reciprocal cube root for each segment will be 

for 1
01 1 1

2 3
1, , 4 6 ,

3 12 6 m

t x
i y t mR

N
        

1
02

7
,

12 24 12

t x
y     

for 2
02 2 2

2 6
2, , 4 12 ,

3 24 12 m

t x
i y t mR

N
        

2
03

7
,

12 48 24

t x
y     

for 3
03 3 3

1 6
3, , 4 12 ,

2 24 24 m

t x
i y t mR

N
        

3
04

1
,

2 49 49

t x
y     

For the indicated intervals, contact points x coordinates on 
the diagram were calculated, where the maxima of negative 
errors appear, 

1 1 11 0.5 , 0.800327tx t t   ,    

2 2 22 0.5 , 1.600645tx t t   ,    3 3 3, 5.600654tx t t  . 

Using condition (5), the corrected values of the magic 
constants for each interval were found:  

𝑅ଵ=0x543bbd84, 𝑅ଶ=0x5466682f, 𝑅ଷ=0x549112da. 

The first iteration for each segment is carried out on the 
basis of a common iterative scheme of Newton-Raphson 
method of the first degree 

𝑦ଵ ൌ 𝑦଴ሺ𝑘ଶ െ 𝑘ଵ𝑥𝑦଴𝑦଴𝑦଴ሻ. 

For each range, this scheme looks like 𝑦ଵ௜ ൌ 𝑦଴௜ሺ𝑘ଶ௜ െ
𝑘ଵ௜𝑥𝑦଴௜𝑦଴௜𝑦଴௜ሻ, 
where for 

𝑖 ൌ 1, 𝑦଴௜ ൌ ሼ𝑦଴ଵ,𝑦଴ଶሽ, 

𝑖 ൌ 2,         𝑦଴௜ ൌ ሼ𝑦଴ଶ,𝑦଴ଷሽ, 

𝑖 ൌ 3, 𝑦଴௜ ൌ ሼ𝑦଴ଷ,𝑦଴ସሽ. 

The points of the positive values of the maximum 
relative errors 𝑥௠௜ and  𝑥௠ሺ௜ାଵሻ in individual segments will 
be: 

i=1, 𝑎 =1, b =2,  1 1
1 2

7
1 , ,

8 4 8m m

t t
x x     

i=2, 𝑎 =2, b =4,  2 2
2 3

7
2 , ,

8 2 8m m

t t
x x     

i=3, 𝑎 =4, b =8,  3 3
3 43 , 6 .

4 4m m

t t
x x     

Based on the maximum points, the values of positive 
relative errors and the contact points (i.e. points connecting 
sections), the values of the respective coefficients 1ik  and 

2ik  were calculated using the serial approximation method 

described in [8], [9]. For the first segment  𝑥 ∈ ሾ1,2ሻ: 11k 
3.3041991,  

21k  2.3659404; for the second segment  𝑥 ∈ ሾ2,4ሻ: 12k 
1.3112723, 22k  1.877848; for the third segment  𝑥 ∈

ሾ4,8ሻ: 13k  0.52037869, 23k  1.4904488.  

The C code of the resulting algorithm RcpCbrt_7 is 
presented below. 

 
float RcpCbrt_7 (float x) { 

float y, c,k1,k2; 
int i,k,R; 
i = *(int*)&x; 
i=i/3; 
k=i&0x007fffff; 
if (k> 5592405) {  // second segment 
   R= 0x5466682F; 
   k1=1.3112723f; 
   k2=1.877848f; 
} else { 
      if (k>2796203) { // first segment 
         R= 0x543bbd84; 
         k1=3.3041991f; 
         k2=2.3659404f; 
      } else {  // third segment 
             R= 0x549112da; 
             k1=0.52037869f; 
             k2=1.4904488f; 
         } 
   } 
i = R - i; 
y = *(float*)&i;   // initial approximation 
y = y*(k2-k1*x*y*y*y);  // 1st iteration 
c = 1.0f - x * y * y * y;   
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y = y * (1.0f + 0.33333333f * c);  // 2nd 
iteration 

return y;  
} 

 
For increasing accuracy in 2nd iteration the value of c 

can be computed by C function fmaf. Initial tests conducted 
on 32-bit microcontroller for comparison of  the algorithm 
RcpCbrt_7 versus the algorithm InvCbrt21 [8] showed a 
moderate progress in decreasing the computation time and 
the number of iterations of the new method (cf. the 
corresponding rows of Table 1 in Section 4). In order to 
improve the execution time in the second iteration even 
further we slightly modified the algorithm RcpCbrt_7. The 
new version of the algorithm called RcpCbrt_8 with lower 
number of arithmetic operations is presented below. 
 
   float RcpCbrt_8 (float x) { 

float y, xh; 
int i,k; 
i = *(int*)&x; 
i=i/3; 
k=i&0x007fffff; 

          if (k>5592405) { 
i= 0x5466682F-i;    // 

second segment 
y = *(float*)&i; 
xh=0.99708012f*x; 
y=y*(1.4278993f-xh*y*y*y); 
y=y*(1.753483f-xh*y*y*y); 

} else { 
     if (k>2796203) { 

i= 0x543bbd84-i;   // 
first segment 

y = *(float*)&i; 
xh=2.0884723f*x; 
y=y*(1.4954307f-xh*y*y*y); 
y=y*(2.1094839f-xh*y*y*y); 

     } else { 
i= 0x549112DA-i;   // 

third segment 
y = *(float*)&i; 
xh=0.47602674f*x; 
y=y*(1.3634177f-xh*y*y*y); // 1st 

iteration 
y=y*(1.4575615f-xh*y*y*y); // 

2nd iteration 
                     } 

} 
           return y; 

} 
 
 
 
 

4. Experimental performance verification 

 
In our first experiment we checked what were the 

relative errors and accuracies of the method based on C 
library functions and custom approximation algorithms. For 
reference the algorithm RcpCbrt_7 was used. Figure 2 
shows a graph of the initial approximations for 0 ( )y x  (solid 

lines) and the function 1/cbrt(x) based on C <math.h> 
library function cbrt(x)  (dashed line). The maximum 
difference between the plots is in the first half of the 
examined section of the argument x ∈ ሾ1,4ሻ . Figure 3 
presents relative errors of initial approximations for 

0 0( ( ) cbrt( ) 1) 100y x x     . The maximum error for 𝑥 ∈

ሾ1,8ሻ  was calculated 0max 0 ( ) cbrt( ) 1y x x    =0.4406, 

and it  corresponds to 1.18 correct bits.  
 

Let us examine the relative errors and accuracy of the 
algorithm RcpCbrt_7. In Figure 4 we can see the plot for 
the first iteration 1( )y x . Figure 5 shows a diagram of its 

relative error  5
1 1( ( ) cbrt( ) 1) 10y x x     . The relative 

maximum error of the first iteration for  𝑥 ∈ ሾ1,8ሻ   was 
calculated 1max 1( ) cbrt( ) 1y x x    =5.5930ꞏ10-5, and it 

corresponds to 14.12 correct bits. The relative maximum 
error of the second iteration for 𝑥 ∈ ሾ1,8ሻ does not exceed 

2max 2 ( ) cbrt( ) 1y x x    =1.5204ꞏ10-7, and it corresponds 

to 22.64 correct bits. 
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comparison we were utilizing 32-bit STM32F767ZIT6 

microcontroller. For program compilation the optimization 
option -O3 was applied. The obtained results are presented 
in Table 1. We can observe that on the first iteration 
RcpCbrt_7 has a slightly lower accuracy but is by 5.65% 
faster than InvCbrt21. In the second iteration, these 
algorithms have similar accuracy but RcpCbrt_7 is by 2.14% 
faster than InvCbrt21.  

Similarly, we tested experimentally the RcpCbrt_8 
algorithm against InvCbrt21 and RcpCbrt_7 algorithms 
implemented on the same STM32F767ZIT6 
microcontroller. For program compilation again the option 
-O3 was applied. The results presented in Table 1 show that 

the newest algorithm is 9.5% faster than InvCbrt21 and 
RcpCbrt_7. The efficiency and precision of the second final 
iteration of RcpCbrt_8 are essential. In fact, the first 
iteration of RcpCbrt_8 algorithm provides lower accuracy 
in comparison to the predecessors, but the second iteration 
compensates for this and brings the precision to the 
appropriate level.   
 
 
 
 
 
 

Figure 3. Relative errors 
 𝛿଴ ൌ ሺ𝑦଴ሺ𝑥ሻ𝑐𝑏𝑟𝑡ሺ𝑥ሻ െ 1ሻ10ଶ 

Figure 2. Functions y0(x) (solid lines) 
and 1/cbrt(x) (dashed line) 

Figure 5. Relative errors  
𝛿ଵ ൌ ሺ𝑦ଵሺ𝑥ሻ𝑐𝑏𝑟𝑡ሺ𝑥ሻ െ 1ሻ ∗ 10ହ 

Figure 4. Function y1(x)  
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Table 1 Comparison of three custom approximation algorithms on 32-bit microcontroller 

 
Algorithm Iteration no. 

i 
Execution 
time (ns) 

No. of cycles Maximum negative 
error ∆௜ ௠௜௡ 

Maximum positive 
error ∆௜ ௠௔௫ 

No. of correct bits 

InvCbrt21 [8] 1 203.75 43.0 −2.6860·10−5 2.6825·10−5 15.18 

2 287.11 62 −1.3276·10−7 1.3301·10−7 22.84 

RcpCbrt_7 1 188.45 40.7 −5.5930·10−5 5.5918·10-5 14.12 

2 281.07 60.7 −1.5204·10−7 1.487·10−7 22.64 

RcpCbrt_8 1 188.45 40.7 −3.6797·10−1 -8.5179·10−2 1.44 

2 259.53 56.1 −1.704·10−7 1.5719·10−7 22.48 

 
We also compared the performance of three custom 

implementations of our algorithms with the performance of 
the algorithm based on the cbrtf (x) function taken from the 
C library <math.h>. In our test scenario we used the AMD 
CPU, Nvidia GPU and Graphcore IPU, verifying the 
execution time, cycle count and RMSD (root-mean-square 
deviation). In opposition to CPU, the execution time in GPU 
and IPU is significantly affected by communication 
between the host and GPU or IPU accelerators, so it doesn't 
make much sense to measure the time in the offload 
accelerator scenario.  

The results of computational experiments performed on 
three different platforms are shown in Table 2. In all cases, 

we used the latest available version of the compilers and 
SDK for the given architecture and compilation with the -
O3 maximum optimization flag. For x variable range [1, 8) 
and minimal step determined by the function nextafter the 
number of iterations equals 25165824. The function 
1/cbrtf(x) out of C <math.h> library was used as the 
reference (predicted) value for calculation of RMSD (Root-
Mean-Square_Deviation) of custom implementations of the 
three investigated algorithms.  

 
 

 
Table 2. Experimental comparison of  three custom C implementations of algorithms for computing the function 1/√𝑥

య  
versus the C <math.h> library function 1/cbrtf(x). 

 
PLATFORM AMD EPYC 7742  

64-Core Processor/  
g++ (Ubuntu 7.5.0-3  

ubuntu1~18.04) 7.5.0   

Nvidia GPU A100 / 
Nvidia Cuda 

11.5.1_496.13 

Graphcore IPU -
M2000 system 

running  
on single core /  
Poplar SDK 2.3 

STEPS / 
ITERATIONS 

n/a 25165824  n/a 25165824 n/a 25165824 

Algorithm Execution 
time (ns) 

Cycle 
count 

RMSD Cycle 
count 

RMSD  Cycle 
count 

RMSD  

STANDARD  C  LIBRARY IMPLEMENTATION 

1/cbrtf(x) 
(<math.h>) 

16 37 reference 
value 

167  reference 
value 

22 507 reference 
value 

CUSTOM  C  IMPLEMENTATIONS 

InvCbrt21 [8] 11 25 3,90E-08 131 3,91E-08 321 3,81E-08 

RcpCbrt_7 11 26 4,00E-08 127 3,92E-08 325 3,92E-08 

RcpCbrt_8 9 21 4,26E-08 112 4,18E-08 319 4,18E-08 

 
 

The obtained comparison results clearly show that 
RcpCbrt_8 outperforms 1/cbrtf(x) and the two other 
implementations discussed in this article in terms of 
computation time. On AMD CPU we obtained the 
execution time 9 ns for RcpCbrt_8 versus 11 ns for 
RcpCbrt_7 and InvCbrt21, as well as 16 ns for 1/cbrtf(x). 
Also the number of cycles for RcpCbrt_8 is the lowest. For 

the Nvidia A100 GPU we have 112 cycles for RcpCbrt_8 
and difference against RcpCbrt_7 and InvCbrt21 looks very 
similar to the scenario we observed with the CPU. On the 
Graphcore IPU the difference is not such significant but still 
RcpCbrt_8 performs with the lowest number of cycles. The 
coincidence of RMSD values for GPU and IPU for the two 
new algorithms is no surprise.  
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5.  Conclusions 
 

The article presents the theoretical background for the 
selection of optimal magic constants in our new algorithms 
for computing the reciprocal cube roots of floating-point 
numbers. We have shown that the quality of the selection of 
the magic constants plays a fundamental role in minimizing 
the relative error values for the initial Newton-Raphson 
approximation.  

The idea of the present work was to modify algorithm 
InvCbrt21 presented in [8] in order to reduce the number of  
arithmetic operations and finally decreasing the calculation 
time of  1/√𝑥

య  function. The achieved results show that the 
accuracy of the calculation decreased to <1.0 bits for the 
first iteration of the RcpCbrt_7 algorithm. In the second 
iteration the difference in accuracy is minimal and equals 
0.2 bits. The final proposed modification implemented in 
RcpCbrt_8 makes this algorithm by 7,5-9,5% faster than 
InvCbrt21 – the best algorithm presented in [8]. At the same 
time, the accuracy of the calculations of RcpCbrt_8 dropped 
to 0.4 bits only versus InvCbrt21. Ultimately, the 
RcpCbrt_8 algorithm is the fastest one with approximately 
the same accuracy. Additionally, this algorithm enables 
dividing the segment x∈ [1,8) into 3 subsegments, which 
would improve the accuracy of the initial approximation 
when necessary and reduce the number of iterations to one.  

For the performance verification of our algorithms we 
used 32-bit STM32F767ZIT6 microcontroller, but we also 
made the comparison of the algorithms on AMD CPU, 
Nvidia GPU and Graphcore IPU platforms. The obtained 
results clearly show that the algorithm RcpCbrt_8 provides 
the best performance characteristics among the three 
examined approximation algorithms. 
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