
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

84

Manuscript received June 5, 2023
Manuscript revised June 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.6.10

Fast Algorithms for Computing Floating-Point
Reciprocal Cube Root Functions

Leonid Moroz1†, Volodymyr Samotyy1† and Cezary Walczyk2††,
leonid.moroz@pk.edu.pl vsamotyy@pk.edu.pl c.walczyk@uwb.edu.pl

1 Cracow University of Technology, Poland, 2 University of Bialystok, Poland

Abstract
In this article the problem of computing floating-point reciprocal
cube root functions is considered. Our new algorithms for this task
decrease the number of arithmetic operations used for computing
1/√𝑥

య . A new approach for selection of magic constants is
presented in order to minimize the computation time for reciprocal
cube roots of arguments with movable decimal point. The
underlying theory enables partitioning of the base argument range

x∈[1,8) into 3 segments, what in turn increases accuracy of initial
function approximation and decreases the number of iterations to
one. Three best algorithms were implemented and carefully tested
on 32-bit microcontroller with ARM core. Their custom C
implementations were favourable compared with the algorithm
based on cbrtf(x) function taken from C <math.h> library on three
different hardware platforms. As a result, the new fast
approximation algorithm for the function 1/√𝑥

య was determined
that outperforms all other algorithms in terms of computation time
and cycle count.
Keywords:
floating-point, cube root, inverse cube root, Newton-Raphson,
Householder.

1. Introduction

The demand for fast numerical computing of
mathematical functions such as logarithm, square and cube
roots, reciprocal and trigonometric functions is fast growing
in such application areas as scientific computations, digital
signal processing, multimedia, geometry and 3D graphics,
thermodynamics, mobile robot navigation, system security,
machine learning etc. Both software and hardware
algorithms and their implementations are of interest. Many
Floating-Point Units have implemented arithmetic
operations in hardware making them extremely fast and
efficient. Unfortunately, there are only a few
implementations of cube root function in hardware, and
they are mainly deployed in Field Programmable Gate
Arrays (FPGAs). Because of its computation complexity, a
cube root is difficult to implement even in FPGAs.

Calculating the cube root was of interest to
mathematicians since ancient times. Babylonians, Greeks,
Chinese, and Hindus were looking for an efficient method
for calculating the cube root as well as the reciprocal cube
root [1]. However, the methods they proposed difficult to

implement conveniently in a computer architecture, so
computer algorithms do it in a completely different way
than we do by manually calculating the cube root.

Long Division Method (LDM) is a technique we
typically use to calculate manually the cube root of a
number [2]. Although the LDM method gives the best
possible result for any computed digit when compared to
modern numerical methods, so far no one successfully
implemented this method numerically. Usually for
numerical computation of the cube root, we use
approximation or estimation methods based on the Newton-
Raphson algorithm, Halley algorithm or their variants
including the magic number approach. Approximation
algorithms, in each iteration, bring the root closer to the
specified precision and require dividing the number by the
newly approximated root. However, each iteration performs
division operations that take longer than adding or
subtracting. Additionally, approximation algorithms have
problems in finding the cube root of a non-perfect cube
number with preferred precision and barely operate with
large numbers [3]. Alternatively, cube roots can be also
calculated using digit-by-digit fashion type of algorithms,
such as non-restoring algorithm [4], [5], which are more
suitable for ASIC and FPGA implementations [6],[7].

Considering all these factors, it is clear that designing an
efficient algorithm to perform a cube root and reciprocal
cube root calculation is a difficult task, but in many
scientific applications it is an essential factor for ensuring
high performance.

The quick calculation of cube root and reciprocal cube
root using the magic constant was recently discussed in [8].
The proposed approach was based on the method of the
magic constant in the single precision format – IEEE Std
754, and approximations of the cube root for an integer
through operations that use the optimized iteration method
based on Newton-Raphson or Householder algorithms.
Even though the presented methods were efficient and fast,
we would like to present in this paper new algorithms for
reciprocal cube root computation which extend and
improve the preceding approach.

The outline of this paper is as follows. In the next
section we describe the background information on the
approximation method proposed in [8]. Section 3 brings all
the necessary theory and the main results of the article. In

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

85

section 4, we report the experimental results related to the
performance of investigated algorithms on 32-bit
STM32F767ZIT6 microcontroller produced by
STMicroelectronics. We also assess our algorithms and
their implementation parameters for CPU, GPU and IPU
platforms, and expose performance evaluation of speed and
accuracy for different types of computer architectures.
Finally, section 5 briefly sums up several conclusions.

2. Basic Concept

Let us recall after [8] the basic theory and results
related to reciprocal cube root approximation. The initial
approximation of the function 31 /y x is denoted by 0y .

It is known that the behaviour of the relative error in
calculating 𝑦଴ in the whole range of normalized numbers
with a floating point can be described by its behaviour for

[1,8)x . In this range there are four piecewise linear

approximations of the function
0 01 02 03 04y y y y y{ , , , } :

   y x t x01

5 1 1

6 6 24
, [1,2);

(1)

   y x t x02

2 1 1

3 12 24
, [2,4);

(2)

   y x t x t03

1 1 1

2 24 24
, [4,)

(3)

   y x t x t04

1 1 1

2 48 48
, [,8);

(4)

where:
4 12 6R mt m N   ;

     R m m
m N R N R1 1 , 

R
m 0 – is the fractional part of

the mantissa of the magic constant R;
𝑁௠ – is the floating point precision of computations.

The maximum relative error of such analytical
approximations does not exceed 1 2

m
N/ () for single

precision
232mN  .

The next step of the approximation increases the
accuracy of calculations of the first iteration without
increasing the higher order of the iteration patterns - the first

order convergence by Newton–Raphson method is followed
by the Householder method of higher orders of convergence.

The method presented above was a basis for
development algorithms presented in [8]. The best
constructed algorithm for approximation of reciprocal cube
root function i.e. Algorithm 5 (InvCbrt21) shall be a
reference point for evaluation of two new algorithms in
section 4.

3. The theoretical background and new algorithms

On the background given in previous section our new
methods for computing reciprocal cube root can be

developed. Let's now divide the interval [1, 8)x into

three segments, where the i-th segment equals: [1, 2) when
i=1, [2, 4) when i =2, and [4, 8) when i =3. In contrary to
[8], in each segment we assume only two initial linear
approximations of the reciprocal cube root function. The
condition must be met that the relative errors of both
adjacent initial linear approximations for each segment
have the shape shown

in Figure 1.

Here we have two points of positive maximum values mix

and (1)m ix  and one contact point of diagrams for both

errors t ix . This is the point of maximum negative relative

error value:

𝛿଴௜୫୧୬ ൌ െ𝛿଴௜୫ୟ୶ ൌ െ𝛿଴ሺ௜ାଵሻ୫ୟ୶ , (5)

which does not depend on the location of the errors on the
y axis, where 𝛿଴௜ ൌ 𝑦଴௜ √𝑥

య െ 1, i=1,2,3.

Fig. 1. Expected shape of relative errors for piecewise
linear approximation of the function 1/cbrt(x)

𝛿଴௜୫ୟ୶ 𝛿଴ሺ௜ାଵሻ୫ୟ୶

𝛿଴௜୫୧୬

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

86

In this case, the lowest range of relative errors will occur.
Now we need to find the values of the magic constants for
each segment that will provide this minimum range of
relative errors. In the interval
x∈ [1,8) there are three pairs of (adjacent) errors:

𝛿଴ଵ and 𝛿଴ଶ, 𝑥 ∈ ሾ1,2ሻ,

𝛿଴ଶ and 𝛿଴ଷ, 𝑥 ∈ ሾ2,4ሻ,

𝛿଴ଷ and 𝛿଴ସ, 𝑥 ∈ ሾ4,8ሻ.

On the basis of experimental studies, it was shown that such
error combinations are possible for the following magic
constants

𝑅ଵ=0x543bxxxx, 𝑅ଶ=0x5466xxxx, 𝑅ଷ=0x5491xxxx.

For the obtained values of the magic constants, the
equations of the corresponding initial approximations of the
reciprocal cube root for each segment will be

for 1
01 1 1

2 3
1, , 4 6 ,

3 12 6 m

t x
i y t mR

N
      

1
02

7
,

12 24 12

t x
y   

for 2
02 2 2

2 6
2, , 4 12 ,

3 24 12 m

t x
i y t mR

N
      

2
03

7
,

12 48 24

t x
y   

for 3
03 3 3

1 6
3, , 4 12 ,

2 24 24 m

t x
i y t mR

N
      

3
04

1
,

2 49 49

t x
y   

For the indicated intervals, contact points x coordinates on
the diagram were calculated, where the maxima of negative
errors appear,

1 1 11 0.5 , 0.800327tx t t   ,

2 2 22 0.5 , 1.600645tx t t   , 3 3 3, 5.600654tx t t  .

Using condition (5), the corrected values of the magic
constants for each interval were found:

𝑅ଵ=0x543bbd84, 𝑅ଶ=0x5466682f, 𝑅ଷ=0x549112da.

The first iteration for each segment is carried out on the
basis of a common iterative scheme of Newton-Raphson
method of the first degree

𝑦ଵ ൌ 𝑦଴ሺ𝑘ଶ െ 𝑘ଵ𝑥𝑦଴𝑦଴𝑦଴ሻ.

For each range, this scheme looks like 𝑦ଵ௜ ൌ 𝑦଴௜ሺ𝑘ଶ௜ െ
𝑘ଵ௜𝑥𝑦଴௜𝑦଴௜𝑦଴௜ሻ,
where for

𝑖 ൌ 1, 𝑦଴௜ ൌ ሼ𝑦଴ଵ,𝑦଴ଶሽ,

𝑖 ൌ 2, 𝑦଴௜ ൌ ሼ𝑦଴ଶ,𝑦଴ଷሽ,

𝑖 ൌ 3, 𝑦଴௜ ൌ ሼ𝑦଴ଷ,𝑦଴ସሽ.

The points of the positive values of the maximum
relative errors 𝑥௠௜ and 𝑥௠ሺ௜ାଵሻ in individual segments will
be:

i=1, 𝑎 =1, b =2, 1 1
1 2

7
1 , ,

8 4 8m m

t t
x x   

i=2, 𝑎 =2, b =4, 2 2
2 3

7
2 , ,

8 2 8m m

t t
x x   

i=3, 𝑎 =4, b =8, 3 3
3 43 , 6 .

4 4m m

t t
x x   

Based on the maximum points, the values of positive
relative errors and the contact points (i.e. points connecting
sections), the values of the respective coefficients 1ik and

2ik were calculated using the serial approximation method

described in [8], [9]. For the first segment 𝑥 ∈ ሾ1,2ሻ: 11k 
3.3041991,

21k  2.3659404; for the second segment 𝑥 ∈ ሾ2,4ሻ: 12k 
1.3112723, 22k  1.877848; for the third segment 𝑥 ∈

ሾ4,8ሻ: 13k  0.52037869, 23k  1.4904488.

The C code of the resulting algorithm RcpCbrt_7 is
presented below.

float RcpCbrt_7 (float x) {

float y, c,k1,k2;
int i,k,R;
i = *(int*)&x;
i=i/3;
k=i&0x007fffff;
if (k> 5592405) { // second segment
 R= 0x5466682F;
 k1=1.3112723f;
 k2=1.877848f;
} else {
 if (k>2796203) { // first segment
 R= 0x543bbd84;
 k1=3.3041991f;
 k2=2.3659404f;
 } else { // third segment
 R= 0x549112da;
 k1=0.52037869f;
 k2=1.4904488f;
 }
 }
i = R - i;
y = *(float*)&i; // initial approximation
y = y*(k2-k1*x*y*y*y); // 1st iteration
c = 1.0f - x * y * y * y;

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

87

y = y * (1.0f + 0.33333333f * c); // 2nd
iteration

return y;
}

For increasing accuracy in 2nd iteration the value of c

can be computed by C function fmaf. Initial tests conducted
on 32-bit microcontroller for comparison of the algorithm
RcpCbrt_7 versus the algorithm InvCbrt21 [8] showed a
moderate progress in decreasing the computation time and
the number of iterations of the new method (cf. the
corresponding rows of Table 1 in Section 4). In order to
improve the execution time in the second iteration even
further we slightly modified the algorithm RcpCbrt_7. The
new version of the algorithm called RcpCbrt_8 with lower
number of arithmetic operations is presented below.

 float RcpCbrt_8 (float x) {

float y, xh;
int i,k;
i = *(int*)&x;
i=i/3;
k=i&0x007fffff;

 if (k>5592405) {
i= 0x5466682F-i; //

second segment
y = *(float*)&i;
xh=0.99708012f*x;
y=y*(1.4278993f-xh*y*y*y);
y=y*(1.753483f-xh*y*y*y);

} else {
 if (k>2796203) {

i= 0x543bbd84-i; //
first segment

y = *(float*)&i;
xh=2.0884723f*x;
y=y*(1.4954307f-xh*y*y*y);
y=y*(2.1094839f-xh*y*y*y);

 } else {
i= 0x549112DA-i; //

third segment
y = *(float*)&i;
xh=0.47602674f*x;
y=y*(1.3634177f-xh*y*y*y); // 1st

iteration
y=y*(1.4575615f-xh*y*y*y); //

2nd iteration
 }

}
 return y;

}

4. Experimental performance verification

In our first experiment we checked what were the

relative errors and accuracies of the method based on C
library functions and custom approximation algorithms. For
reference the algorithm RcpCbrt_7 was used. Figure 2
shows a graph of the initial approximations for 0 ()y x (solid

lines) and the function 1/cbrt(x) based on C <math.h>
library function cbrt(x) (dashed line). The maximum
difference between the plots is in the first half of the
examined section of the argument x ∈ ሾ1,4ሻ . Figure 3
presents relative errors of initial approximations for

0 0(() cbrt() 1) 100y x x     . The maximum error for 𝑥 ∈

ሾ1,8ሻ was calculated 0max 0 () cbrt() 1y x x    =0.4406,

and it corresponds to 1.18 correct bits.

Let us examine the relative errors and accuracy of the
algorithm RcpCbrt_7. In Figure 4 we can see the plot for
the first iteration 1()y x . Figure 5 shows a diagram of its

relative error 5
1 1(() cbrt() 1) 10y x x     . The relative

maximum error of the first iteration for 𝑥 ∈ ሾ1,8ሻ was
calculated 1max 1() cbrt() 1y x x    =5.5930ꞏ10-5, and it

corresponds to 14.12 correct bits. The relative maximum
error of the second iteration for 𝑥 ∈ ሾ1,8ሻ does not exceed

2max 2 () cbrt() 1y x x    =1.5204ꞏ10-7, and it corresponds

to 22.64 correct bits.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

88

comparison we were utilizing 32-bit STM32F767ZIT6

microcontroller. For program compilation the optimization
option -O3 was applied. The obtained results are presented
in Table 1. We can observe that on the first iteration
RcpCbrt_7 has a slightly lower accuracy but is by 5.65%
faster than InvCbrt21. In the second iteration, these
algorithms have similar accuracy but RcpCbrt_7 is by 2.14%
faster than InvCbrt21.

Similarly, we tested experimentally the RcpCbrt_8
algorithm against InvCbrt21 and RcpCbrt_7 algorithms
implemented on the same STM32F767ZIT6
microcontroller. For program compilation again the option
-O3 was applied. The results presented in Table 1 show that

the newest algorithm is 9.5% faster than InvCbrt21 and
RcpCbrt_7. The efficiency and precision of the second final
iteration of RcpCbrt_8 are essential. In fact, the first
iteration of RcpCbrt_8 algorithm provides lower accuracy
in comparison to the predecessors, but the second iteration
compensates for this and brings the precision to the
appropriate level.

Figure 3. Relative errors
 𝛿଴ ൌ ሺ𝑦଴ሺ𝑥ሻ𝑐𝑏𝑟𝑡ሺ𝑥ሻ െ 1ሻ10ଶ

Figure 2. Functions y0(x) (solid lines)
and 1/cbrt(x) (dashed line)

Figure 5. Relative errors
𝛿ଵ ൌ ሺ𝑦ଵሺ𝑥ሻ𝑐𝑏𝑟𝑡ሺ𝑥ሻ െ 1ሻ ∗ 10ହ

Figure 4. Function y1(x)

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

89

Table 1 Comparison of three custom approximation algorithms on 32-bit microcontroller

Algorithm Iteration no.

i
Execution
time (ns)

No. of cycles Maximum negative
error ∆௜ ௠௜௡

Maximum positive
error ∆௜ ௠௔௫

No. of correct bits

InvCbrt21 [8] 1 203.75 43.0 −2.6860·10−5 2.6825·10−5 15.18

2 287.11 62 −1.3276·10−7 1.3301·10−7 22.84

RcpCbrt_7 1 188.45 40.7 −5.5930·10−5 5.5918·10-5 14.12

2 281.07 60.7 −1.5204·10−7 1.487·10−7 22.64

RcpCbrt_8 1 188.45 40.7 −3.6797·10−1 -8.5179·10−2 1.44

2 259.53 56.1 −1.704·10−7 1.5719·10−7 22.48

We also compared the performance of three custom

implementations of our algorithms with the performance of
the algorithm based on the cbrtf (x) function taken from the
C library <math.h>. In our test scenario we used the AMD
CPU, Nvidia GPU and Graphcore IPU, verifying the
execution time, cycle count and RMSD (root-mean-square
deviation). In opposition to CPU, the execution time in GPU
and IPU is significantly affected by communication
between the host and GPU or IPU accelerators, so it doesn't
make much sense to measure the time in the offload
accelerator scenario.

The results of computational experiments performed on
three different platforms are shown in Table 2. In all cases,

we used the latest available version of the compilers and
SDK for the given architecture and compilation with the -
O3 maximum optimization flag. For x variable range [1, 8)
and minimal step determined by the function nextafter the
number of iterations equals 25165824. The function
1/cbrtf(x) out of C <math.h> library was used as the
reference (predicted) value for calculation of RMSD (Root-
Mean-Square_Deviation) of custom implementations of the
three investigated algorithms.

Table 2. Experimental comparison of three custom C implementations of algorithms for computing the function 1/√𝑥

య
versus the C <math.h> library function 1/cbrtf(x).

PLATFORM AMD EPYC 7742

64-Core Processor/
g++ (Ubuntu 7.5.0-3

ubuntu1~18.04) 7.5.0

Nvidia GPU A100 /
Nvidia Cuda

11.5.1_496.13

Graphcore IPU -
M2000 system

running
on single core /
Poplar SDK 2.3

STEPS /
ITERATIONS

n/a 25165824 n/a 25165824 n/a 25165824

Algorithm Execution
time (ns)

Cycle
count

RMSD Cycle
count

RMSD Cycle
count

RMSD

STANDARD C LIBRARY IMPLEMENTATION

1/cbrtf(x)
(<math.h>)

16 37 reference
value

167 reference
value

22 507 reference
value

CUSTOM C IMPLEMENTATIONS

InvCbrt21 [8] 11 25 3,90E-08 131 3,91E-08 321 3,81E-08

RcpCbrt_7 11 26 4,00E-08 127 3,92E-08 325 3,92E-08

RcpCbrt_8 9 21 4,26E-08 112 4,18E-08 319 4,18E-08

The obtained comparison results clearly show that
RcpCbrt_8 outperforms 1/cbrtf(x) and the two other
implementations discussed in this article in terms of
computation time. On AMD CPU we obtained the
execution time 9 ns for RcpCbrt_8 versus 11 ns for
RcpCbrt_7 and InvCbrt21, as well as 16 ns for 1/cbrtf(x).
Also the number of cycles for RcpCbrt_8 is the lowest. For

the Nvidia A100 GPU we have 112 cycles for RcpCbrt_8
and difference against RcpCbrt_7 and InvCbrt21 looks very
similar to the scenario we observed with the CPU. On the
Graphcore IPU the difference is not such significant but still
RcpCbrt_8 performs with the lowest number of cycles. The
coincidence of RMSD values for GPU and IPU for the two
new algorithms is no surprise.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

90

5. Conclusions

The article presents the theoretical background for the
selection of optimal magic constants in our new algorithms
for computing the reciprocal cube roots of floating-point
numbers. We have shown that the quality of the selection of
the magic constants plays a fundamental role in minimizing
the relative error values for the initial Newton-Raphson
approximation.

The idea of the present work was to modify algorithm
InvCbrt21 presented in [8] in order to reduce the number of
arithmetic operations and finally decreasing the calculation
time of 1/√𝑥

య function. The achieved results show that the
accuracy of the calculation decreased to <1.0 bits for the
first iteration of the RcpCbrt_7 algorithm. In the second
iteration the difference in accuracy is minimal and equals
0.2 bits. The final proposed modification implemented in
RcpCbrt_8 makes this algorithm by 7,5-9,5% faster than
InvCbrt21 – the best algorithm presented in [8]. At the same
time, the accuracy of the calculations of RcpCbrt_8 dropped
to 0.4 bits only versus InvCbrt21. Ultimately, the
RcpCbrt_8 algorithm is the fastest one with approximately
the same accuracy. Additionally, this algorithm enables
dividing the segment x∈ [1,8) into 3 subsegments, which
would improve the accuracy of the initial approximation
when necessary and reduce the number of iterations to one.

For the performance verification of our algorithms we
used 32-bit STM32F767ZIT6 microcontroller, but we also
made the comparison of the algorithms on AMD CPU,
Nvidia GPU and Graphcore IPU platforms. The obtained
results clearly show that the algorithm RcpCbrt_8 provides
the best performance characteristics among the three
examined approximation algorithms.

References

[1] Bailey D. and Borwein, J. (2012). Ancient Indian Square
Roots: An Exercise in Forensic Paleo-Mathematics,
American Mathematical Monthly. 119, doi:
10.4169/amer.math.monthly.119.08.646.

[2] Long Division Method:
https://www.wikihow.com/Calculate-Cube-Root-by-Hand

[3] Singh Y.K. Computing cube root of a positive number.
ADBU-Journal of Engineering Technology, AJET, Volume
4(1), 2016, pp. 85-89, ISSN: 2348-7305,

[4] Beasley, A.E., Watson, R.J., Clarke, C.T. "Efficient digital
implementaton of a multi-precision square-root algorithm",
IET Computers & Digital Techniques. 2019, Vol. 13 Issue 2,
pp. 110-117, doi: 10.1049/iet-cdt.2018.5051

[5] Peng, H. "Algorithms for extracting square roots and cube
roots", 1981 IEEE 5th Symposium on Computer Arithmetic
(ARITH), 1981, pp. 121-126, doi:
10.1109/ARITH.1981.6159287.

[6] Guardia C. M. and Boemo E., "FPGA implementation of a
binary32 floating point cube root", 2014 IX Southern

Conference on Programmable Logic (SPL), 2014, pp. 1-6, doi:
10.1109/SPL.2014.7002202.

[7] Putra R. V. W. and Adiono T., "Optimized hardware
algorithm for integer cube root calculation and its efficient
architecture", 2015 International Symposium on Intelligent
Signal Processing and Communication Systems (ISPACS),
2015, pp. 263-267, doi: 10.1109/ISPACS.2015.7432777.

[8] Moroz, L., Samotyy, V.; Walczyk, C.J.; Cieślinski, J.L. "Fast
Calculation of Cube and Inverse Cube Roots Using a Magic
Constant and Its Implementation on Microcontrollers",
Energies, 2021, 14, 1058, doi: 10.3390/en14041058

[9] Moroz, L.; Samotyy, V.; Horyachyy, O.; Dzelendzyak, U.
"Algorithms for calculating the square root and inverse
square root based on the second-order Householder’s
method", In Proceedings of the 2019 10th IEEE International
Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications
(IDAACS), Metz, France, 18–21 September 2019;
pp. 436–442. doi: 10.1109/IDAACS.2019.8924302

