• Title/Summary/Keyword: Inverse Analysis Method

Search Result 778, Processing Time 0.039 seconds

Spatial Analysis for Mean Annual Precipitation Based On Neural Networks (신경망 기법을 이용한 연평균 강우량의 공간 해석)

  • Sin, Hyeon-Seok;Park, Mu-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.3-13
    • /
    • 1999
  • In this study, an alternative spatial analysis method against conventional methods such as Thiessen method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is presented. It is based on neural network modeling and provides a nonparametric mean estimator and also estimators of high order statistics such as standard deviation and skewness. In addition, it provides a decision-making tool including an estimator of posterior probability that a spatial variable at a given point will belong to various classes representing the severity of the problem of interest and a Bayesian classifier to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented to be used for analyzing a mean annual precipitation filed and classifying the field into dry, normal, and wet subregions. For an example, the whole area of South Korea with 39 precipitation sites is applied. Then, several useful results related with the spatial variability of mean annual precipitation on South Korea were obtained such as interpolated field, standard deviation field, and probability maps. In addition, the whole South Korea was classified with dry, normal, and wet regions.

  • PDF

An Out of Core Linear Direct Solution Method for Large Scale Structural Analysis (대규모 구조해석을 위한 보조기억장치 활용 선형 직접해법)

  • Kim, Min-Ki;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.445-452
    • /
    • 2014
  • This paper discusses the multifrontal direct solution method with out of core storage for large scale structural analysis in a limited computing resource. Large scale structural analysis requires huge amount of memory space and computation, so out of core solution method is needed in limited computing resource. In this research, out of core multifrontal solution algorithm which utilize the small size of physical memory and minimize the amount of access of low speed out of core storage is introduced. Three ideas, which are stack space in lower trianglar part of square factorization matrix, inverse stack data structure and selective data caching and recovery by data block size, are proposed.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

A Study of Spatial Interpolation Impact on Large Watershed Rainfall Considering Elevation (고도를 고려한 공간보간기법이 대유역 강우량 산정시 미치는 영향 연구)

  • Jung, Hyuk;Shin, Hyung-Jin;Park, Jong-Yoon;Jung, In-Kyun;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.23-29
    • /
    • 2011
  • This study was conducted to identify the effect of lapse rate application according to elevation on the estimation of large scale watershed rainfall. For the Han river basin (26,018 $km^2$), the 11 years (2000-2010) daily rainfall data from 108 AWS (Automatic Weather Station) were collected. Especially, the 11 heavy rain and typhoon events from 2004 to 2009 were selected for trend analysis. The elevation effect by IDW (Inverse Distance Weights) interpolation showed the change up to +62.7 % for 1,200~1,600m elevation band. The effect based on 19 subbasins of WAMIS (Water Resources Management Information System) water resources unit map, the changes of IDW and Thiessen were -8.0 % (Downstream of Han river)~ +19.7 % (Upstream of Namhan river) and -5.7 %~+15.9 % respectively. It showed the increase trend as the elevation increases. For the 11 years rainfall data analysis, the lapse rate effect of IDW and Thiessen showed increase of 9.7 %~15.5 % and 6.6 %~9.6 % respectively.

A Proposed Method for Estimating Demand function of Cournot Model in Electricity Market (전력시장에서의 쿠르노 수요함수 추정)

  • Kang, Dong-Joo;Hur, Jin;Oh, Tae-Kyoo;Chung, Koo-Hyung;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.168-170
    • /
    • 2005
  • At present Cournot model is one of the most commonly used theories to analyze the gaming situation in oligopoly market. But there exist several problems to apply this model to electricity market. The representative one is to obtain the inverse demand curve able to be induced from the relationship between market price and demand response. In Cournot model, each player offers their generation quantity to accomplish maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears on the long-term basis through the statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium

  • PDF

취성재료의 충격파괴에 관한 연구 I

  • 양인영;정태권;정낙규;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.298-309
    • /
    • 1990
  • In this paper, a new method is suggested to analyze impulsive stresses at loading poing of concentrated impact load under certain impact conditions determined by impact velocity, stiffness of plate and mass of impact body, etc. The impulsive stresses are analyzed by using the three dimensional dynamic theory of elasticity so as to analytically clarify the generation phenomenon of cone crack at the impact fracture of fragile materials (to be discussed if the second paper). The Lagrange's plate theory and Hertz's law of contact theory are used for the analysis of impact load, and the approximate equation of impact load is suggested to analyze the impulsive stresses at the impact point to decide the ranage of impact load factor. When impact load factors are over and under 0.263, approximate equations are suggested to be F(t)=Aexp(-Bt)sinCt and F(t)=Aexp(-bt) {1-exp(Ct)} respectively. Also, the inverse Laplace transformation is done by using the F.F.T.(fast fourier transform) algorithm. And in order to clarity the validity of stress analysis method, experiments on strain fluctuation at impact point are performed on a supported square glass plate. Finally, these analytical results are shown to be in close agreement with experimental results.

Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E (병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구)

  • Gwon, Gi-Chan;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

Integrity Assessment of Asphalt Concrete Pavement System Considering Uncertainties in Material Properties (재료 물성치의 불확실성을 고려한 포장구조체의 건전성 평가)

  • Yi, Jin-Hak;Kim, Jae-Min;Kim, Young-Sang;Moon, Sung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.49-54
    • /
    • 2007
  • Structural integrity assessment technique for pavement system is studied considering the uncertainties among the material properties. The artificial neural networks technique is applied for the inverse analysis to estimate the elastic modulus based on the measured deflections from the FWD test. A computer code based on the spectral element method was developed for the accurate and fast analysis of the multi-layered soil structures, and the developed program was used for generating the training and testing patterns for the neural network. Neural networks was applied to estimate the elastic modulus of pavement system using the maximum deflections with and without the uncertainties in the material properties. It was found that the estimation results by the conventiona1 neural networks were very poor when there exist the uncertainties and the estimation results could be significantly improved by adopting the proposed method for generating training patterns considering the uncertainties among material properties.

  • PDF

Development of an Electrical Capacitance Tomography Code for Analysis of Two-Phase Flow in the Rectangular Pipe (사각관 이상유동 분석을 위한 전기적 캐패시턴스 토모그라피 코드 개발)

  • Lee, Kyoung-Hwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.87-94
    • /
    • 2005
  • A computer code for Electrical Capacitance Tomography (ECT) is developed to sense the cross sectional phase distribution of two-phase flow in the rectangular pipe in which the tomography sensor furnished by the insulated wall, electrodes, and electric field screen. The computer code had two steps for the image reconstruction. In the forward projection step, the sensitivity matrix was constructed based on the electric field calculated by the finite difference method. In the backward projection step, the sensitivity matrix and the measured capacitances were used to reconstruct the cross sectional image. Several algorithms including LBP, TR, ITR, and PLI were employed to find the proper one for the two-phase flow analysis. Since the dielectric constant of the water in two-phase flow is sensitive to the thermal parameter such as, temperature and pressure, the developed code was evaluated to find their accuracy, speed of calculation, and sensitivity to the variation of the dielectric constant. It was found that the iterative methods are superior to the direct methods for the image reconstruction, and the PLI method was the best in the variation of the dielectric constants.

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan;Jakka, Ravi S.;Wason, H.R.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.775-791
    • /
    • 2017
  • Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.