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Spatial Analysis for Mean Annual Precipitation Based
On Neural Networks
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Abstract

In this study, an alternative spatial analysis mecthod against conventional methods such as Thiessen
method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is
presented. It is based on necural network modeling and provides a nonparametric mean cstimator and also
estimators of high order statistics such as standard deviation and skewness. In addition, it provides a
decision-making tool including an estimator of posterior probability that a spatial variable at a given point
will helong to various classes representing the scverity of the problem of interest and a Bayesian classifier
to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented
to be used for analyzing a mean annual precipitation filed and classifying the ficld into dry, normal, and
wet subregions. For an example, the whole arca of South Korea with 39 precipitation sites is applied.
Then, scveral useful results related with the spatial variability of mean annual precipitation on South
Korca were obtained such as interpolated field, standard deviation field, and probability maps. In addition,
the whole South Korea was classified with dry, normal, and wet regions.

Keywords: Spatial Analysis, Mean Annual Precipitation, Neural Networks

L X

ol iz FZF HEo] AAS Ysle] Adurr|lom AlgEle] @@ Thiessen i Kriging HES tiAEd 4+ 9l
391 SANN(Spatial-Analysis Neural-Network)-& A270%ick o] mdle AAW 7[W& o8¢ vjujsy
] o mEA xFe] High wuk ohe} ML o Feo) nx BAXE ATEle] Frh S ofwl 2| Fel
’*191 FpAge] ghol f1 A7he] wm wig] XAE 0% WS 7MY WSl £ dhaegl dA kg 2 2
ol wet 71 HERSHA 2573 Aclass boundary) & AAse] F 4 iz Bayesmn A7) Classifier) & A&
sh= 9JAbdH(decision-making) SEE FHE 5tk 2 AgeiME Ak SANNREE ] 9—1"L7l(interpolator)%
Abgsle] g e Ayt s i 7o A 34 "Z“" RN 58 7 Ae] oF oFE ARk,

>«

A

Bavesian 571 Abgsle] didbaade 71 Addshll Az BE, 58 A9 Phshs YHE AN #o 2
A M= 3970 75 A% AEE olgsle] §-eluhie] ARt el b sidel S-8ele] Huk AwHom Ayt
7FQure] Pyt BY ), fen S A9k oie] ekl "9 Az 5E, 3;& Ao R B
Rk}

HAIRO| : B2 AmH ZeEk AFg

+  RAMSE K sha} e

Assistant Pr()l"., Dep. of Civil Engrg., Pusan National Univ., Pusan 609 735, Korea
% ShAOietE BEE-gsh) #ugs

Assistant Prof., Dep. of Civil Engrg., Hanseo Univ., Chungnam 336 820 Korea

HI2K YR 19994 20 3



1. Introduction

The
environmental data such as precipitation, soil

uncertainty  of  hydrological and

properties, and groundwater contaminant

concentration is of a great necessity and
importance for solving various problems related
to water resources planning and management,
groundwater contamination, and water quality
control. A number of methods such as Kriging
have been suggested in literature for
hydrological and environmental data (Bras and
Rodrigues-Iturbe, 1985).

methods have been limited for analyzing the

However, these

complex natural phenomena, because of the

assumptions of stationarity and normality of
the underlying variables and the drawbacks in

structural analysis such as shadow effect,

anisotrophic data, nested structure, and hole
effect (ASCE, 1990).

Recently, Neural Networks have been

successfully used to solve some complex
hydrological and environmental problems such
as river flow prediction (Markus et al, 1995),
activated sludge prediction (Novotny et al.,
1991), determination of
(Rashid et al, 1992),

reclamation (Rogers and Dowla, 1994). Based

aquifer parameters

and groundwater

on various advantages of the use of neural
networks (Haykin, 1994), Shin and Salas (1997)
introduced a alternative method, called Spatial
Network  (SANN)  which
following characteristics: (1)

Analysis  Neural
pertains  the
of the conditional

nonparametric  estimators

mean and higher order moments such as
standard deviation and skewness coefficient; (2)
the estimator of the point posterior probability
estimator for some classes predefined and the
Bayesian classifier to assign a class to an
arbitrary spatial point. The proposed estimators

are implemented into a specified multi- layer

feed-forward neural network structure to
achieve computational efficiency based on
4

parallel system modeling, and its structure and
operation scheme is summarized briefly in this
paper.

Mean Annual (MAP)

given region is commonly required for several

Precipitation for a

hydrological studies such as water—balance

calculations, groundwater flow modeling, and
drought area investigation. For these studies, it
is necessary to estimate MAP at arbitrary
stations using the observed precipitation data
at the gauged stations. Tabios and Salas
(1985) compared several methods for estimating
MAP and concluded that Ordinary Kriging
(OK) Kriging (UK) were
superior to Thiessen polygon, ID, and PN
methods. Likewise, Kassim and Kottegoda
(1991) compared OK and Disjunctive Kriging
(DK) for designing the MAP network.

In this paper, there are two purposes. The

and Universal

first is to introduce the Spatial Analysis Neural
Network (SANN) spatial
variability of the MAP of the whole area of
South Korea. Based on this application, the

for analvzing the

applicability of SANN mayv be verified for
several other applications associated with the
analysis of spatial variability. The other is for
the region to be classified into dry, normal,
and wet precipitation areas, which can not be
accomplished by the traditional methods such
as Kriging. For doing this, the 39 precipitation
sites where the observation periods are long
the ohservation

comparably were used as

precipitation sites.

2. Description of Spatial Analysis Neural
Network (SANN) Model

In this section, we describe the structure and
operation of SANN, which has developed for
analyzing any type of spatial variables, based
on a multi-layer feed-forward neural network
form. The more theoretical derivations and
illustrations related to various estimators can

be found in Shin and Salas (1997).
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Fig. 1. Arbitrary spatial region in a two—
dimensional domain. The circular
boundary represents the receptive
field of the Gaussian Kernel
Function (GKF) node, G,
represents the width of the
Gaussian kernel at point n, and
Xolxnys) is the center of the n-th
GKF node. x(xy) is any
interpolation point.

Suppose that we configure a spatial region
R as that

measurements of the spatial variable, z, are

shown in Fig. 1. Assume

available in a two-dimensional domain, i.e.

x = [x,v]. We have N sample observations
in the region which are denoted by the
set {X,,Z,ln=1,..,N}. We

want to determine the values of z at any point

observation

X, ie. z(x), its standard deviation s( x),
the posterior probability P[C’| x] for each
class, 7j=1,...,N,., and the class indicator

d( x). For this purpose, SANN is structured
as shown in Fig. 2. It consists of four layers,

namely input laver, GKF layer, summation
laver, and estimator layer, in which the
neurons or nodes between layers are

interconnected successively by feed-forward
direction

In the following paragraphs, the function and
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LAYER LAYER LAYER

ESTIMATOR
LAYER

‘< %

P [C Ne ]X]

@® GKF nodes

—=—> Weighted Connections
——» Non-weighted Connections
' ons)

Fig. 2. Structure of the spatial analysis and
neural network (SANN) model. GKF
stands for Gaussian kernel function.

the connection mechanism of each layer will be
detail.
dimensional domain, the input layer has two
which

explained In Considering a two-—

nodes represent the x and y
The
implement a

coordinates, ie. the vector x= [x,y].
connections of the

of the

mput layer

pass input  coordinate  vector
x = [x,y] to the GKF laver, and those are
not weighted. The GKF layer consists of N
(GKF) nodes. To
the posterior probability estimator
GKF nodes

class units as

Gaussian  Kernel Function
determine
and the Bayesian classifier, the
must be divided up into N,
shown in Fig. 2. For doing this, the observed
set {X,,Z,ln=1,..,N} is rearranged as

{Xw.Zuy | k=1,..,N’ and j=1,..,N,}.

X (& 1is then located at the center of the £k
in which the
number of the GKF nodes is N’. Then, the
of the #k-th

GKF node in class unit j are expressed as:

-th GKF node in class unit 7

transfer or activation functions



D%,
:;(k,/) ] 1)

ay = expl—
(k,/) 26)((/@']')

where a(; » = the GKF node output from the

k-th node in class unit j:Dy,,= the
Euclidean distance between the input vector x
and the k-th center X, in class unit J
and the square of it is
Diuy = (X_Xue,j))T (x—X ) and
O width for the %&-th GKF node in class
Each GKF node has the

parameters;

expressed as

unit ;. internal
X (4 = the position of the center
of the GKF node in two-dimensional space,
and = the smoothing parameter known as the
width of the GKF nodes. The function of the
GKF node may be summarized as: the output

from each GKF node is a function of the

Euclidean distance from the center X, to

the input point x, and each GKF node only
responds (or activates) when the input pattern
falls within its receptive field which is defined
by the width of the GKF node (Poggio and
1990). When the

placed at the center of the GKF node X,

Girosi, input vector x is
the output (1) becomes the maximum value
which is one. Otherwise, the magnitude of the
GKF output decreases exponentially, as the
input vector is farther from the center.

The outputs of the GKF nodes in the GKF
layer are passed to the summation layer with
the weighted connections. Then, the summation
laver provides the following outputs:

N, i
G=2 2 <—~—91 )mm (2a)

Ok, j)

(2b)

N
Gy = 12::1 gl (—L")Z(k,j)a(k.j)

2
O x(k, )

N,
Gi= 2 3 ( 21 ){ (Zop)? —2Zp2(%)
J=1 k=1 Gx(k,j)
+ Q(X)E_i_ O‘E}d(k,,)
(2¢)

. 1
Gy, = ﬁ] ( )a , (2d)
v SRR

where Z(, ;= observed value corresponding

to the k£-th GKF node for class unit 7,

z ( x) = estimated value at the point x, o, =
the smoothing parameter or Gaussian kernel
width associated with the spatial variable z
which must be defined.

The outputs from the summation nodes are
passed to the estimator nodes with unit
weights. Then, as shown in Fig. 1, the outputs
of estimator nodes assign the estimations of

the conditional mean 2z ( x), its standard
deviation s ( x), and the posterior probability
P[C’] x] of each class, respectively, by the

following activation:

> _ G
z(x)= G, (3)
A B Gs
s{x) = ey (4)
. G,
p ; — 4.7 =
[C7) x] G (5)

Finally, the class indicator d{ x) is determined
by assigning the class with maximum posterior
probability.

SANN consists of three operation modes,
namely, a training mode, an interpolation mode,
and a classification mode. In the training mode,
the model structure is constructed according to
the classes defined by the user as described
above. In addition, the model parameters such
as the centers and the widths for all GKF
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nodes must be determined by using sample
observations. The training procedure can be
summarized as:

(1) Prepare the observation set

{(X",Z" | n=1,..,N}
number of observations.

(2) Define the classes ¢’ = {C',C% ..., C"}
{(TL(H17=1,..,N.}.
Based on the definition of the classes, classify

with

where N is the

with truncation levels

the observation set into each class C’
{ X Zup | k=1, ..., N;j=1,..,N.}.
(3) Set the centers of the GKF nodes with

the observed coordinate vector Xy ,. For

instance, the center of the %-th GKF node in
class unit j is assigned to be Xy, ;. Here,
the class laver is arranged with N, class

units as shown in Fig. 2.

(4) Determine the widths oy ; of the GKF

nodes. The widths represent the shape of the
Gaussian kernel as well as the diameter of the
receptive region. They have a profound effect
upon the accuracy of the estimation (Haykin,
1994).

uniformly as possible,

To cover the whole input space as

Oxry must be small
when the distances between centers are close.
Otherwise, it must be large when the centers
are separated far away from each other. In this
study, the P-nearest neighbor method (Moody
1989) is

P is the number of the nearest

and Darken, applied to determine

Oxrj Where
neighbor points. First, the root mean square
distance (RMSD) between a center 0y, and
its P-nearest neighbors is determined for each

GKF node:

®
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is the 7-th nearest neighbor point
X h k-th GKF

node in class unit j. Then the width 0., is

where X,

from the center of the

given by 64 5= RMSDw,y / F where F is a
control factor. Saha and Keeler (1990) stated
that just one nearest neighbor, ie. P =1 can
produce the desired performance.

(5) After setting the centers and the widths
of the GKF nodes,
observed

the estimates at the
points are obtained as
z (X4,) = Gy/G,. Then, the
square error (RMSE) between the observed

Zyy=2 (Xpp)

root mean

values and the estimated

values z ( X () is determined as:

SR
RMSE=\/ LN ]2::1 ZI[Z (X(k,/))‘é (X(/e,/))]2

- L Sz xor @

Then, the width of the spatial variable z, o,
is determined by ¢, - RMSE.
Once the

interpolation mode is performed as:
(1) Enter the set of

training 1s completed, the

spatial  coordinate
is a

15 the

vectors {x” |m=1,..,M} where m

given point in the region and M

number of interpolation points.

(2) Obtain the interpolated value z ( x™),
the standard deviation of the estimate s ( x"),
the observation point density o ( x"), and the

posterior probability P[C’| x™1 for each
class.

After completing the interpolation mode, then
the classification mode 1s accomplished by

using the estimated posterior probabilities.

3. Regional Mean Annual Precipitation
Analysis

The area selected for this paper is the whole



area of South Korea. It is located between the
126 and 130 degrees East longitude and the 34
and 385 degrees North latitude. Mean Annual

Precipitation (MAP) data was calculated using
the periods of 1966-1996 at 39 precipitation
stations as shown in Figure 3. In this figure,

Table 1. Precipitation Stations and Mean Annual Precipitation at South Korea.

?\I‘(t)c Station ID Station Name (Longitude, Latitude) Precigiz?i:nl,&i?zil(mm)
1 90 Sokcho (128.6, 38.3) 1201
2 100 Taeganryung (128.8, 37.7) 1491
3 101 Chunchun (127.7. 37.9) 1247
4 105 Kangreung (1289, 37.8) 1377
5 108 Seoul (127, 37.6) 1310
6 112 Inchun (126.6, 37.5) 1134
7 119 Suwon (127, 37.3) 1250
8 129 Susan (1265, 36.7) 1186
9 130 Uljin (1294, 37) 1051
10 131 Chungju (1274, 36.6) 1200
11 133 Taejun (1274, 36.3) 1257
12 135 Chupungryung (128, 36.2) 1130
13 138 Pohang (1294, 36) 1093
14 Kunsan (126.7, 36} 1147
15 Taegu (128.6, 35.9) 1010
16 Junju (127.2, 35.8) 1247
17 Ulsan (129.3, 35.6) 1272
18 Kangju (1269, 35.2) 1314
19 Pusan (129, 35.1) 1453
20 Tongyoung (128.4, 34.9) 1354
21 Mokpo (1264, 34.8) 1075
22 Yeosu (127.7, 34.7) 1386
23 Jinju (1281, 35.2) 1391
24 Kanghwa 37.7) 1128
25 Inje (128.2, 38.1) 946
26 Hongchun (1279, 37.7) 1118
27 Samchuk ¥ 1088
28 Jechun (128.2, 37.2) 1137
29 Chungju (127.9, 37) 1028
30 Asan (127, 36.8) 1064
31 Boryung (126.6, 36.3) 1076
32 Jungeup (1209, 35.6) 1092
33 Sunchun (1276, 35.1) 1274
34 Youngju (1285, 36.9) 1035
35 Youngduk (1294, 365) 893
36 Eusung (1287, 36.4) 850
37 Youngchun {129, 36) 867
38 Kuchang (127.9, 35.7) 1087
39 Milyang (128.8, 35.5) 1062

Mean 1165

Standard Deviation 157

Coefficient of Variation 0.13

Coefficient of Skewness 0.06

Basic Statistics of MAP 75 % percentile 1256
50 % percentile 1135

25 % percentile 1079

Minimum 830

Maximum 1491

BEAERBEHIE
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Fig. 3. South Korea and Selected
Precipitation Sites
the precipitation sites were denoted by the
in Table L
Table 1 shows the station name, serial number,

serial numbers which indicated

station number for Korean Meteorological
Agency, elevation(m), and MAP data (mm) for
each station. As stated before, Thiessen,
Inverse Distance, and Kriging methods have
been commonly used for spatial analysis of
certain such as

hydrologic problems

precipitation. However, the superiority of
SANN against those methods was confirmed in
Shin and Salas (1997) based on several real
hydrological and environmental applications.
SANN was applied to interpolate MAP over
the study region and the standard deviation of
addition, the
classified into wet, normal, and dry areas. At
first, the SANN was trained based on the 39

MAP data observed in the study region as

the estimate. In region is

follows:
(1) the 39 observed values Z(; and its
corresponding coordinate vectors X, were

classified into three classes C’, 7=123, using
two truncation levels, TL(1) = 1078 mm (25 %

BI2E A1 19991° 2

and TL(2) = 1256 mm (75 %
percentile) where the percentiles are derived
from the 39 values of MAP;

(2) the centers of GKF nodes were made

percentile)

equal to the corresponding coordinate vectors;
(3) the widths of the GKIF nodes
were determined using the control parameters
P=1 and F=16;
(4) using the determined centers and widths,

Ox(k,

the estimates at the 36 observed points were
made. Then, the root mean square error
(RMSE in Eq. (7)) between the observed and
estimated values was 12 mm and it was used
for the value of o,.

After the training of SANN, the estimates of
spatial properties such as MAP field 2 (x™),

the standard deviation of the estimate s ( x"),

the posterior probabilities P[C’| x"] were
constructed on the grid system which a cell is
a 0.2 degree X 0.2 degree rectangular. Table 2
shows the areal statistical properties for each
estimated properties of the MAP field at the
whole South Korea.

Comparing the statistics of the observed
MAPs and the estimated MAP, z ( x”) as
shown in Table 2, the areal average of the
estimated MAD® field was 1170 mm which is
almost close to the value 1165 mm for the
field. In addition, the
deviation and the skewness coefficient of the
estimated MAP field were closed to the
observed field. This indicates that the SANN
estimates of the MAP field reproduced well the
overall distribution of the observed data. The
of the
estimates which indicates the areal estimation

observed standard

areal average of standard deviation

error was b % of the areal average MAP 1170

mim.
Fig. 4 (a) shows the areal distribution of the
estimated MAP over the entire region

(interpolated map). It indicates that the middle

region of Kyung-gi Province around the



Table 2. Summary of the Basic Statistics for Interpolation and Classification Based on
SANN for the Mean Annual Precipitation at South Korea
Observed 2 (X”‘) s (x’”) . " ) m 3 m
MAP (mm) (mm) (rm) P(C' | xT)[P(C? x")|P(C* x™)
Mean 1165 1170 64 0.42 0.37 0.21
Standard 157 149 37 0.40 0.33 0.23
Deviation
Coet. OF 0.13 0.13 0.39 095 0.89 1.10
Variation
Coel. OF 0.06 0.08 1.09 0.63 062 0.70
Skewness

Note: 2 (x™) = interpolated MAP at x”

x" = interpolation points in 2 km X 2 km grid system

s (x”) = standard deviation of the estimates at x

o (x”) = observation point density at x

P(C’| x™) = posterior probability that the MAP at x"

respectively, 7 = 1, 2, 3.

INTERPOLATED MAP

388

129 130

128
X(LON)

127

is in Dry, Normal, and Wet areas,

STANDARD DEVIATION MAP
SN
W 2T

128
X(LON}

126 127

Fig. 4. Interpolated Field (a) and Standard Deviation of Estimate Field
{b) for the MAP at South Korea Constructed by SANN Model.

coordinate (127, 38), the east ocean side, and
the
Province and Jun-ra-mam Province were the
high MAP the the
Kyung-sang-buk Province around the
coordinate (129, 36.5), and the southwestern
ocean side in Jun-ra-nam Province around the
coordinate (1265, 34.5) presents the low MAP

south ocean side in Kyung-sang—nam

regions. In contrast,

regions. In terms of the estimation error of
MAP field, the areal distribution of standard
deviation of the estimates was made as in Fig.
4(b). The result indicates that the high error of
estimation about 140 - 160 mm appears at the
southeastern region around (129, 355) and the
northeastern region around (128.5, 38), because
these regions are located between the high
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MAP and low MAP regions. In addition, the
region around (126.8, 35) where the observation
MAP sites are scattered comparing with the
other regions had also high standard deviation
of estimation about 120. Overall, the standard
deviation estimator of SANN was performed
well for the MAP field.

Based on the posterior probability estimator
of SANN,
probabilities were defined as

the point dry, normal, and wet

Point Dry Probability: the probability that the
arbitrary point x” will be classified into dry

region

x")

(8a)

P(C'| x"1= Pro(MAP < 1078 mm |

Point Normal Probability: the probability that

the arbitrary point x will be classified into

normal region

P(C?| x"]
= Pro(1078 mm < MAP < 1256 mm | x")

(8b)

Point Wet Probability: the probability that the

arbitrary point x” will be classified into wet

region

P(z <=1079 mm)

Y{(LAT)

x")

(8c¢)

P[C*| x”]= Pro(MAP < 1256 mm |

Here, the first truncation level TL(1) which
divides dry and normal classes was MAP =
1078 mm (25 % percentile of MAP) and the
level TL(2)
normal and wet classes was MAP =

which divides
1256 mm
The truncation levels may

second truncation

(75 % percentile).
vary based on the individual project and user’s
purpose.

After estimating each probability over the
whole region, the dry probability map, normal
probability map, and wet probability map were
(a), (b), (c),
respectively. This result may be useful for

contoured as in Fig. 5 and

water engineers for making a probabilistic
decision of dry, normal, and wet regions at the
For

that the location around the point (128, 35} is

arbitrary point. instance, the probability
considered as a wet region, is over 90 % as
shown in Fig. 5 (¢) and the location around
(29, 36) of the

probability to be classified into dry region.

the point has over 90 %

Then, based on the Bayesian classifier of
SANN model described above, the entire South
Korea was classified into dry region, normal

P{1256 mm < 2)
5 -

Fig. 5. Posterior Probability Maps for (a) Dry Region, (b) Normal Region, and

(c) Wet Region, respectively.
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Fig. 6. Classification Map of South Korea
to Dry, Normal, and Wet Regions
(White: Dry Region, Gray: Normal
Region, Black: Wet Region)

region, and wet region as the {ollowing
criteria:
Dry Area:

ifmax P[C'| x], P[C?] x], (9a)

and P[C*| x]=P[C'| x]

Normal Area:

1fmaxP[C1| x], P[C? | ox1, (9b)
and P[C*| x]=P[C?| x]

Wet Area:
1fmaXP[C1| x], P[C*] x], (9¢)
and PLC’| x]=PLC’| x]

Fig. 6 shows the Bayesian classification of the
whole South Korea into dry (white), normal
(gray), and wet (black) regions. As shown in
this figure, the middle of Kyung-gi Province
around (127,3R),

indicated as

and the south oceanic are

were the wet regions. The
Kyung-sang-buk Province around (129, 36) and
the northern Chung-chung Province appears

the dry regions.
4. Summary and Conclusions
field,

In the real hydrological the spatial

analysis has been of big concern for several
aspects such as interpolation of the spatial
variable, optimal hydrological network design,
(GIS)

implementation. The primary purpose of this

and Geographical Information System
study was to introduce Spatial Analysis Neural
Network (SANN) model which is an alternative
spatial analysis techniques for an arbitrary
spatial variable. Then, the second purpose was
to apply the SANN for analyzing the Mean
Annual Precipitation (MAP) Field at the South
Korean region below 38 latitude degree.

In the

management

problems of water balance and

associated with  the spatial
variability of MADP, three questions often arise:
(1) How can the MAP field is distributed over
the region based on the limited observation
(2) What is the
probability that an arbitrary point belongs to
dry,
—occurrence question);

points? (Interpolation question);

or wet regions? (probability -of
and (3) What are the
boundaries dividing between dry, normal, and

normal,

wet areas? (optimal-classification problem).
Those

interpolator, the posterior probability estimator,

questions were answered by the
and the Bayesian classifier provided by SANN
for the South Korean region. In addition, the
procedure to be achieved above results was
described in detail, which can be used for any
region of interest. The results were made for
all 0.2 by 0.2 degree points and contoured over
the South Korean region, which can help the
reader understanding the spatial distribution of
the South Korean MAP field, the dry, normal,
and wet probabilities, and the classification of
the MAP region.

As stated in the main contents, the use of
SANN to analyze the spatial MAP field can
achieve several advantages such as the
nonlinear interpolation based on the nature of
providing the probability

neural networks,

estimation, and optimal spatial classification,

which can not be provided by the traditional
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techniques such as Thiessen method and
Kriging etc.
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