• Title/Summary/Keyword: Invariant differential operators

Search Result 9, Processing Time 0.017 seconds

INVARIANT DIFFERENTIAL OPERATORS ON THE MINKOWSKI-EUCLID SPACE

  • Yang, Jae-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.275-306
    • /
    • 2013
  • For two positive integers $m$ and $n$, let $\mathcal{P}_n$ be the open convex cone in $\mathbb{R}^{n(n+1)/2}$ consisting of positive definite $n{\times}n$ real symmetric matrices and let $\mathbb{R}^{(m,n)}$ be the set of all $m{\times}n$ real matrices. In this paper, we investigate differential operators on the non-reductive homogeneous space $\mathcal{P}_n{\times}\mathbb{R}^{(m,n)}$ that are invariant under the natural action of the semidirect product group $GL(n,\mathbb{R}){\times}\mathbb{R}^{(m,n)}$ on the Minkowski-Euclid space $\mathcal{P}_n{\times}\mathbb{R}^{(m,n)}$. These invariant differential operators play an important role in the theory of automorphic forms on $GL(n,\mathbb{R}){\times}\mathbb{R}^{(m,n)}$ generalizing that of automorphic forms on $GL(n,\mathbb{R})$.

SOME GENERALIZED HIGHER SCHWARZIAN OPERATORS

  • Kim, Seong-A
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.147-154
    • /
    • 2009
  • Tamanoi proposed higher Schwarzian operators which include the classical Schwarzian derivative as the first nontrivial operator. In view of the relations between the classical Schwarzian derivative and the analogous differential operator defined in terms of Peschl's differential operators, we define the generating function of our generalized higher operators in terms of Peschl's differential operators and obtain recursion formulas for them. Our generalized higher operators include the analogous differential operator to the classical Schwarzian derivative. A special case of our generalized higher Schwarzian operators turns out to be the Tamanoi's operators as expected.

  • PDF

Spectra of Higher Spin Operators on the Sphere

  • Doojin Hong
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.105-122
    • /
    • 2023
  • We present explicit formulas for the spectra of higher spin operators on the subbundle of the bundle of spinor-valued trace free symmetric tensors that are annihilated by Clifford multiplication over the standard sphere in odd dimension. In the even dimensional case, we give the spectra of the square of such operators. The Dirac and Rarita-Schwinger operators are zero-form and one-form cases, respectively. We also give eigenvalue formulas for the conformally invariant differential operators of all odd orders on the subbundle of the bundle of spinor-valued forms that are annihilated by Clifford multiplication in both even and odd dimensions on the sphere.

A Note on Maass-Jacobi Forms

  • YANG, JAE-HYUN
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.547-566
    • /
    • 2003
  • In this paper, we introduce the notion of Maass-Jacobi forms and investigate some properties of these new automorphic forms. We also characterize these automorphic forms in several ways.

  • PDF

HYPERCYCLICITY ON INVARIANT SUBSPACES

  • Petersson, Henrik
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.903-921
    • /
    • 2008
  • A continuous linear operator $T\;:\;X{\rightarrow}X$ is called hypercyclic if there exists an $x\;{\in}\;X$ such that the orbit ${T^nx}_{n{\geq}0}$ is dense. We consider the problem: given an operator $T\;:\;X{\rightarrow}X$, hypercyclic or not, is the restriction $T|y$ to some closed invariant subspace $y{\subset}X$ hypercyclic? In particular, it is well-known that any non-constant partial differential operator p(D) on $H({\mathbb{C}}^d)$ (entire functions) is hypercyclic. Now, if q(D) is another such operator, p(D) maps ker q(D) invariantly (by commutativity), and we obtain a necessary and sufficient condition on p and q in order that the restriction p(D) : ker q(D) $\rightarrow$ ker q(D) is hypercyclic. We also study hypercyclicity for other types of operators on subspaces of $H({\mathbb{C}}^d)$.

A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK

  • Yang, Jae-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.781-794
    • /
    • 2008
  • Let $\mathbb{H}_g$ and $\mathbb{D}_g$ be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let $\mathbb{C}^{(h,g)}$ be the Euclidean space of all $h{\times}g$ complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ onto the Siegel-Jacobi space $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ which gives a partial bounded realization of $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ by $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. We prove that the natural actions of the Jacobi group on $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. and $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$. are compatible via a partial Cayley transform. A partial Cayley transform plays an important role in computing differential operators on the Siegel Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. invariant under the natural action of the Jacobi group $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ explicitly.