• Title/Summary/Keyword: Inundated Depth

Search Result 22, Processing Time 0.026 seconds

Development of Numerical Model for Flood Inundation Analysis in a River with GIS Application

  • Lee, Hong-Rae;Han, Kun-Yeun;Kim, Sang-Ho;Choi, Hyun-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.59-72
    • /
    • 1999
  • FIAS(Flood Inundation Analysis System) using Arc/Info is developed and applied to the Namhan River basin. The DWOPER model is revised and expanded to handle simultaneous multiple overtopping and/or breaking, and to estimate the inundated depth and extents. The model is applied to an actual levee overtopping case, which occurred on August 23∼27, 1995 in the Namhan River. Stage hydrographs inside and outside of the levee are compared, then inundated discharges from overbank spilling are computed. The Graphic User interface is developed with AML. Two- and three-dimensional inundation map by Arc/Info are presented. The computed inundation extends agree with observations in terms of inundated depth and flooded area. The FIAS is useful for the analysis of flood hazards and preparation of inundation map for river basins.

  • PDF

Numerical Model for Flood Inundation Analysis in a River(II) : Uncertainty Analysis (하천 홍수범람해석을 위한 수치모형의 개발(II): 불확실도 해석)

  • Lee, Hong-Rae;Han, Geon-Yeon;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 1998
  • The numerical model named "DWOPER-LEV" for the uncertainty analysis of flood inundation is developed. DWOPER model is expanded to compute overtopping risks of levee and to predict the range of the possible flood extent. Monte-Carlo simulation is applied to examine the uncertainties in cross section geometry and Manning's roughness coefficient. The model is applied to an actual levee break of the South Han River. The risks of overtopping are computed and the possible range of inundated area and inundated depth are estimated.

  • PDF

Urban Flood Simulation Considering Buildings Resistance Coefficient Based on GIS: Focused on Samcheok City (건물 저항계수에 따른 GIS기반의 밀집 시가지 침수모의 -삼척시가지를 중심으로-)

  • Ji, Juong-Hwan;Kang, Sang-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.211-220
    • /
    • 2010
  • The objective of this paper presents the application of an "integrated urban flood modeling-runoff model, urban flood model and sewer system model-" in a highly urbanized area of Samcheok where is seriously inundated in 2002 and 2003. For this, we demonstrate how couple a 1-D hydrodynamic model of the river, a 2-D hydrodynamic model of the overland (surface) flow, and a sewer network model including each boundary conditions. In order to make data file for the model, topographic information like elevation and share rate of buildings are directly extracted from DEM or topographical source data without data exchange to avoid uncertainty errors. Furthermore, the research is to assess the impacts of Manning n and buildings influences to inundated depth by changing its share ratio from 10 % to 30 % in low-land urban area. As a results, we found out that the urban inundated depth was decreased by Manning n but increased by buildings ratio. The calculated results of inundation was similar with observed one in 2002 and 2003 flooding. Furthermore, the area was also inundated under not riverbank break case in 2002 flooding.

Urban Flood Simulation Considering Building and Sewer Lines (건물 및 우수 배제를 고려한 시가지 범람해석)

  • Kang, Sang-Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.213-219
    • /
    • 2009
  • In densely urban areas, features such as the sewer system, buildings and river banks have an effect on flow dynamics and flood propagation, and will therefore be accounted for in the model set-up. While two-dimensional (2D) flood models of urban areas are at the forefront of current research into flood inundation mechanisms, they are however constrained by inadequate parameters of topography, and insufficient and inaccurate data. In this study, an urban flood model (overland flow, 2D urban flood flow and sewer flow) was combined and applied at Samcheok city which was damaged by inundation in 2002, in order to simulate inundation depth. The influence of buildings and pumping capacity was also analyzed to estimate the inundated depth in the study area. As a result, it was found that urban inundated depth are affected by pumping capacity directly and it increased about 20-30 cm on most of the modeled area with a building share rate of 0.2-0.6 per unit grid.

Study on Application of Diffusion Wave Inundation Analysis Model Linked with GIS (GIS와 연계한 확산파 침수해석 모형의 적용에 대한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeon;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.88-100
    • /
    • 2009
  • An inundation analysis was performed on Hwapocheon, one of the tributaries of Nakdong River, which was inundated by heavy rain in August, 2002 with overtopping and levee break. The results of the developed model, 2D diffusion wave inundation analysis model, was compared with inundation trace map as well as inundation depth in terms of time and maximum inundated area calculated from FLUMEN model for the assessment of model applicability. The results from the developed model showed high fitness of 88.61% in comparison with observed data. Also maximum inundated area and spatial distribution of inundation zone were also found to be consistent with the results of FLUMEN model. Therefore, inundation zone and maximum inundation area calculated over a period of time by adopting 2D diffusion wave inundation analysis model can be used as a database for identifying high risk areas of inundation and establishing flood damage reduction measures.

  • PDF

Floodwave Modeling in Inundated Area Resulting from Levee-Break (제내지에서의 범람홍수파 해석을 위한 수치모형의 개발)

  • 이종태;한건연
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.163-174
    • /
    • 1995
  • A diffusion hydrodynamic model named "DFLOW-2" for the floodwave analysis from levee-break in protected lowland has been developed. The model has been applied to Ilsan levee-break, which occurred on September 12-13, 1990 in the downstream of the Han River. An unsteady flow analysis has been made in the reach from Indokyo to Junryu. Overflow through broken levee has been treated as internal boundary condition in the channel. A post-processor has been also developed to demonstrate the simulation results. The velocity distributions and inundated depths have been presented. The computed results have good agreements with observed data in terms of inundation depth, flood arrival time and flooded areas.ded areas.

  • PDF

DEM Based Urban Inundation Analysis Model Linked with SWMM (SWMM을 연계한 DEM기반의 도시침수해석 모형)

  • Lee, Chang-Hee;Han, Kun-Yeun;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.441-452
    • /
    • 2006
  • Recently the natural damage associated with flood disaster has been dramatically increased. Especially, inundation in the urban area causes serious damage to people and assets because of the concentration of infrastructure and population growth. The purpose of this study is to develop a new urban inundation model combining a storm sewer system model and a 2D overland-flow model for the estimation inundation depth In urban area caused by the surcharge of storm sewers. The movement of water in the studied urban watershed is characterized by two components, namely, the storm sewer flow component and the surcharge-induced inundation component. The model was applied to Goonja and Jangan catchments. Inundated depths were presented to demonstrate model simulation results. The simulation results can help the authority decide preventing flood damages by redesigning and enlarging the capacities of storm sewer systems in the inundation-prone areas. The model can also be applied to make the potential inundation area map and establish flood-mitigation measures as a part of the decision support system for flood control authority.

Treatment Efficiency of a Subsurface-Flow Wetland System Constructed on Floodplain (고수부지를 이용한 여과습지의 수질정화 초기처리)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.56-63
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a subsurface-flow constructed wetland system (23 m in length, 6.5 m in width, 0.65 m in depth) over one year after its establishment on floodplain of a stream in June 2000. An upper layer of 10 cm in depth was filled with course sand and the main biological layer of 50 cm depth with crushed stone with 8 - 15 mm in diameter. The system was planted with common reeds (Phragmites australis) grown on pots. Effluent discharged from a secondary-level treatment plant was funneled into it. Reed stems emerging in April 2001 grew up to 145.9cm until July 2001. The number of reed stems in July 2001 increased by about 11 times compared with that just after planting. The system was inundated seven times by storms over the monitoring period. Reeds were slightly bent after flooding, however they returned to almost upright standing in a couple of weeks. Small portion of inside slope of berm was eroded and the system surface had a sedimentation of 2 - 3 mm in depth. The average removal rates for SS, $BOD_5$, T-N and T-P was 73%, 70%, 53%, and 72%, respectively. The purification efficiencies for SS and $BOD_5$ were fairly good. The reduction rates for T-N was relatively low for the period of late fall through winter until early spring due to lower water temperature which retarded microbial nitrification and denitrification mechanisms. Reduction in the concentration of T-P during fall and winter was relatively higher than that during spring. Leach of phosphorous from plant litters lying on system surface and slight resuspension of precipitated phosphorous in substrates resulted in lower reduction for T-P in spring.

  • PDF

Multi-Dimensional Flood Damage Analysis (Ⅰ): Principle and Procedure (다차원 홍수피해산정방법(Ⅰ): 원리 및 절차)

  • Choi, Seung-An;Yi, Choong-Sung;Shim, Myung-Pil;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.1-9
    • /
    • 2006
  • Recently, the flood damages including losses of human lifes and property have been rapidly increased according to extreme floods. And we know that the flood control project is needed for diminishing flood damages. However, we have had the lacks in a reasonable methodology for the economic analysis of food control project. This study aims to improve the existing economic analysis method for flood control project. So, first of all, we understand the problems of existing economic analysis and investigate the methodologies of foreign countries. Based on that, the Multi-Dimensional Flood Damage Analysis(MD-FDA) is developed in this study. The survey of properties on the floodplain is conducted, then the damage rate obtained by evaluating the monetary values of surveyed property is applied, and the expected flood damage is calculated. Also by considering damage area in the floodplain as well as spatial distribution of inundated depth using GIS, the flood damages are evaluated more accurately than existing method. From the study, we know that the MD-FDA can improve the problems of existing method and evaluate the reasonable flood damages by using updated nation리 statistics.

A Study on Hydraulic Stable Analysis of The Natural Small River (친환경 소하천의 수리적 안정성 분석에 관한 연구)

  • Kim, Tae-Kyoung;Rhee, Kyoung-Hoon;Sun, Byoung-Jin;Choi, Cheong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.3
    • /
    • pp.187-194
    • /
    • 2007
  • It started road constructions around river in 1990s. These maintenances concentrate on city river. Because river lives no living things and men don't come near there. But in spite of these river environment go to rack, river maintenances still keep on using preexistence method since 1990s. Only a part of city river environment maintenances consider environmental ability of passive river, river maintenance of a purpose of flood control still don't consider in the concrete. Because propulsion device that consider environment ability of passive river and possible application techniques don't complete. In accordance, A natural river maintenance needs absolutly a series of river projects. Because a natural river maintenance prevents a damage of environment ability. This study is to assume the flood really happened and to carry out the flood damage simulation needed in overflow simulation about the inundated zone. Also, This study examine unstable part about the hydraulic characteristic as velocities, stream power, shear, hydraulic depth, flow area in basin. And this study applied the HEC-RAS(river analysis system) model to predict flood overflow in youngsan river basin. Project flood is used the return period 100 year and inputed data that was calculated in intensity figures of illumination.