• Title/Summary/Keyword: Intracellular signaling

Search Result 536, Processing Time 0.025 seconds

Requirement of Protein Kinase C Pathway during progesterone-induced Oocyte Maturation in Amphibian, Rana dybowskii

  • Bandyopadhyay, Jaya;Bandyopadhyay, Arun;Kang, Hae-Mook;Kwon, Hyuk-Bang;Choi, Hueng-Sik
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.87-91
    • /
    • 1998
  • The present study investigated the involvement of the phospholipase C (PLC) and protein kinase C (PKC) signaling pathways during progesteroneinduced meiotic maturation in amphibian (Rana dybowskii) oocytes. Prosesterone-induced germinal vesicle breakdown (GVBD) of oocytes was significantly inhibited by a PKC inhibitor, staurosporine and a PLC inhibitor, U73122, in a dose-dependent manner. In contrast, U73343, an inactive analogue of U73122, was ineffective in suppressing GVBD. PKC activity in oocytes reached a maximum level at 30 min after progesterone stimulation and this elevated PKC activity was effectively suppressed by U73122 or staurosporine, suggesting that the activation of PKC enzyme is closely linked to PLC signaling during oocyte maturation. In addition, these inhib itors blocked the maturation promoting factor (MPF) activity which appeared in oocytes in response to progesterone, suggesting that PKC activation is an important signal for MPF activity. Therefore, this study demonstrates that the activation of PKC via PLC signaling is directly linked to an intracellular protein kinase cascade related to the appearance of MPF activity during meiotic maturation in amphibian (Rana dybowskii) oocytes.

  • PDF

CoMFA and CoMSIA on the Inhibition of Calcineurin-NFAT Signaling by Blocking Protein-Protein Interaction with N-(4-Oxo-1(4H)-naphthalenylidene)benzenesulfonamide Derivatives

  • Myung, Pyung-Keun;Park, Kyung-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1941-1945
    • /
    • 2005
  • To raises the possibility of designing effective inhibitors, 3D-QSAR for the inhibition of calcineurin-NFAT signaling by new N-(4-oxo-1(4H)-naphthalenylidene benzenesulfonamide derivatives as inhibitors of intracellular protein-protein interactions were studied using CoMFA and CoMSIA methodology. The three templates, N-(4-oxo-1(4H)-naphthalenylidene)benzenesulfonamide (A), benzenesulfonamide (B) and 4-oxo-1(4H)-naphthalenylidene (C) were selected to improve the statistic of the present 3D-QSAR models. The best models with combination of standard field in CoMFA, and steric field and electrostatic field in CoMSIA derived from the template, B and C, because most of the compounds tend not to be aligned in template A. From the based on the CoMFA and CoMSIA contour maps, the $R_1$ and $R_2$ groups on 4-oxo-1(4H) naphthalenylidene ring are steric favor. The ortho position on the benzenesulfonyl ring is steric disfavor and the meta position is steric favor. In addition, the oxygene atom of carbonyl group will have better inhibition activities as it has a negative charge favor. From these findings, we can conclude that the analyses of the contour maps provided insight into possible modification of molecules for effective inhibitiors.

Comprehensive Relevance of AMPK in Adaptive Responses of Physical Exercise, Skeletal Muscle and Neuromuscular Disorders

  • Lee, Jun-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.3
    • /
    • pp.141-150
    • /
    • 2018
  • PURPOSE: This study was conducted to understand the adaptive responses of different modes of physical exercises utilizing skeletal muscle and the comprehensive relevance of AMPK signaling that can be activated by physical exercise as a potential molecular target in human health problems such as neuromuscular disorders (NMDs). METHODS: Most of the contents in this review article are based on recent publications concerning the main topics of interest. The reference literatures cited were obtained by basic searches of overseas academic databases such as PubMed and ScienceDirect using EndNote X7.8. RESULTS: The phenotypic adaptive responses of skeletal muscle during endurance- and resistance-based exercise training (ET and RT respectively) appear to be distinct. To explain the adaptive responses in each single mode of exercises (ET, RT) along with combined exercise training (CT), AMPK signaling is proposed as an important molecular link among those differential modes of exercise and a promising molecular target of NMDs. CONCLUSION: Based on the available evidence, intracellular AMPK signaling activated by diverse stimuli including physical exercise can be a potential and promising therapeutic target for the prevention, amelioration or cure of various human health problems including NMDs and may also be beneficial for physical rehabilitation and emergency situations that may elicit acute metabolic stresses.

The Role of Nitric Oxide in Mycobacterial Infections

  • Yang, Chul-Su;Yuk, Jae-Min;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.46-52
    • /
    • 2009
  • Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease.

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF

Improvement of Leptin Resistance (렙틴 저항성의 개선)

  • Kim, Yong Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.1
    • /
    • pp.4-9
    • /
    • 2013
  • Leptin, a 16-kDa cytokine, is secreted by adipose tissue in response to the surplus of fat store. Thereby, the brain is informed about the body's energy status. In the hypothalamus, leptin triggers specific neuronal subpopulations (e.g., POMC and NPY neurons) and activates several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway, which eventually translates into decreased food intake and increased energy expenditure. Leptin signal is inhibited by a feedback inhibitory pathway mediated by SOCS3. PTP1B involves another inhibitory pathway of leptin. Leptin potently promotes fat mass loss and body weight reduction in lean subjects. However, it is not widely used in the clinical field because of leptin resistance, which is a common feature of obesity characterized by hyperleptinemia and the failure of exogenous leptin administration to provide therapeutic benefit in rodents and humans. The potential mechanisms of leptin resistance include the following: 1) increases in circulating leptin-binding proteins, 2) reduced transport of leptin across the blood-brain barrier, 3) decreased leptin receptor-B (LRB), and/or 4) the provocation of processes that diminish cellular leptin signaling (inflammation, endoplasmic reticulum stress, feedback inhibition, etc.). Thus, interference of the cellular mechanisms that attenuate leptin signaling improves leptin action in cells and animal models, suggesting the potential utility of these processes as points of therapeutic intervention. Various experimental trials and compounds that improve leptin resistance are introduced in this paper.

Mitochondria: multifaceted regulators of aging

  • Son, Jyung Mean;Lee, Changhan
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.13-23
    • /
    • 2019
  • Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging.

High performance Algorithm for extracting and redicting MAP Kinase signaling pathways based on S. cerevisiae rotein-Protein Interaction and Protein location Information (S. cerevisiae 단백질간 상호작용과 세포 내 위치 정보를 활용한 MAP Kinase 신호전달경로추출 및 예측을 위한 고성능 알고리즘 연구)

  • Jo, Mi-Kyung;Kim, Min-Kyung;Park, Hyun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.193-207
    • /
    • 2009
  • Intracellular signal transduction is achieved by protein-protein interaction. In this paper, we suggest high performance algorithm based on Yeast protein-protein interaction and protein location information. We compare if pathways predicted with high valued weights indicate similar tendency with pathways provided in KEGG. Furthermore, we suggest extracted results, which can imply a discovery of new signaling pathways that is yet proven through experiments. This will be a good basis for research to discover new protein signaling pathways and unknown functions of established proteins.