• Title/Summary/Keyword: Interval-valued fuzzy number

Search Result 17, Processing Time 0.024 seconds

Interval-Valued Fuzzy Cosets

  • Lee, Keon-Chang;Hur, Kul;Lim, Pyung-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.646-655
    • /
    • 2012
  • First, we prove a number of results about interval-valued fuzzy groups involving the notions of interval-valued fuzzy cosets and interval-valued fuzzy normal subgroups which are analogs of important results from group theory. Also, we introduce analogs of some group-theoretic concepts such as characteristic subgroup, normalizer and abelian groups. Secondly, we prove that if A is an interval-valued fuzzy subgroup of a group G such that the index of A is the smallest prime dividing the order of G, then A is an interval-valued fuzzy normal subgroup. Finally, we show that there is a one-to-one correspondence the interval-valued fuzzy cosets of an interval-valued fuzzy subgroup A of a group G and the cosets of a certain subgroup H of G.

A note on the Choquet distance measures for fuzzy number-valued fuzzy numbers (퍼지수치 퍼지수 상의 쇼케이 거리측도에 관한 성질)

  • Jang Lee-Chae;Kim Won-Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.365-369
    • /
    • 2006
  • Interval-valued fuzzy sets were suggested for the first time by Gorzalczang(1983) and Turken(1986). Based on this, Wang and Li extended their operations on interval-valued fuzzy numbers. Recently, Hong(2002) generalized results of Wang and Li and extended to interval-valued fuzzy sets with Riemann integral. Using interval-valued Choquet integrals with respect to a fuzzy measure instead of Riemann integrals with respect to a classical measure, we studied some characterizations of interval-valued Choquet distance(2005). In this paper, we define Choquet distance measure for fuzzy number-valued fuzzy numbers and investigate some algebraic properties of them.

  • PDF

On fuzzy number-valued Choquet integrals

  • 장이채;김태균
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.7-7
    • /
    • 2003
  • We studied closed set-valued Choquet integrals in two papers(1997, 2000) and convergence theorems under some sufficient conditions in two papers(2003), for examples : (i) convergence theorems for monotone convergent sequences of Choquet integrably bounded closed set-valued functions, (ii) covergence theorems for the upper limit and the lower limit of a sequence of Choquet integrably bounded closed set-valued functions. In this presentation, we consider fuzzy number-valued functions and define Choquet integrals of fuzzy number-valued functions. But these concepts of fuzzy number-valued Choquet inetgrals are all based on the corresponding results of interval-valued Choquet integrals. We also discuss their properties which are positively homogeneous and monotonicity of fuzzy number-valued Choquet integrals. Furthermore, we will prove convergence theorems for fuzzy number-valued Choquet integrals. They will be used in the following applications : (1) Subjectively probability and expectation utility without additivity associated with fuzzy events as in Choquet integrable fuzzy number-valued functions, (2) Capacity measure which are presented by comonotonically additive fuzzy number-valued functionals, and (3) Ambiguity measure related with fuzzy number-valued fuzzy inference.

  • PDF

A study on the Choquet distance measures and their applications (쇼케이 거리측도와 응용에 관한 연구)

  • Jang, Lee-Chae;Kim, Won-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.550-555
    • /
    • 2006
  • Internal-valued fuzzy sets were suggested for the first time by Gorzalczang(1983). Based on this, Wang and Li extended their operations on interval-valued fuzzy numbers. Recently, Hong(2002) generalized results of Wang and Li and extended to interval-valued fuzzy numbers with Riemann integral. By using interval-valued Choquet integrals with respect to a fuzzy measure instead of Riemann integrals with respect to a classical measure, we studied some characterizations of interval-valued Choquet distance(2005). In this paper, we define Choquet distance measure for fuzzy number-valued fuzzy numbers and investigate some properties of them.

Some algebraic properties and a distance measure for interval-valued fuzzy numbers (쇼케이적분을 이용한 구간치 퍼지수 상의 거리측도에 관한 성질)

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • Interval-valued fuzzy sets were suggested for the first time by Gorzalczang(1983) and Turken(1986). Based on this, Wang and Li extended their operations on interval-valued fuzzy numbers. Recently, Hong(2002) generalized results of Wang and Li and extended to interval-valued fuzzy sets with Riemann integral. In this paper, we define a distance measure on interval-valued fuzzy numbers using Choquet integral with respect to a classical measure and investigate their properties.

  • PDF

Choquet expected values of fuzzy number-valued random variables and their applications (퍼지수치 확률변수의 쇼케이 기댓값과 그 응용)

  • Lee, Chae-Jang;Kim, Tae-Kyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.394-397
    • /
    • 2004
  • In this paper, we consider interval number-valued random variables and fuzzy number-valued random variables and discuss Choquet integrals of them. Using these properties, we define the Choquet expected value of fuzzy number-valued random variables which is a natural generalization of the Lebesgue expected value of Lebesgue expected value of fuzzy random variables. Furthermore, we discuss some application of them.

  • PDF

ON SET-VALUED CHOQUET INTEGRALS AND CONVERGENCE THEOREMS (II)

  • Lee, Chae-Jang;Kim, Tae-Kyun;Jeon, Jong-Duek
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.139-147
    • /
    • 2003
  • In this paper, we consider Choquet integrals of interval number-valued functions(simply, interval number-valued Choquet integrals). Then, we prove a convergence theorem for interval number-valued Choquet integrals with respect to an autocontinuous fuzzy measure.

Some properties of Choquet distance measures for interval-valued fuzzy numbers (구간치 퍼지수 상의 쇼케이 거리측도에 관한 성질)

  • Jang, Lee-Chae;Kim, Won-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.789-793
    • /
    • 2005
  • Interval-valued fuzzy sets were suggested for the first time by Gorzalczang(1983) and Turken(19a6). Based on this, Wang and Li offended their operations on interval-valued fuzzy numbers. Recently, Hong(2002) generalized results of Wang and Li and extended to interval-valued fuzzy sets with Riemann integral. In this paper, using Choquet integrals with respect to a fuzzy measure instead of Riemann integrals with respect to a classical measure, we define a Choquet distance measure for interval-valued fuzzy numbers and investigate its properties.