• Title/Summary/Keyword: Internet activity

Search Result 651, Processing Time 0.024 seconds

A Critical Path Search and The Project Activities Scheduling (임계경로 탐색과 프로젝트 활동 일정 수립)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.141-150
    • /
    • 2012
  • This paper suggests a critical path search algorithm that can easily draw PERT/GANTT chart which manages and plans a project schedule. In order to evaluate a critical path that determines the project schedule, Critical Path Method (CPM) is generally utilized. However, CPM undergoes 5 stages to calculate the critical path for a network diagram that is previously designed according to correlative relationship and execution period of project execution activities. And it may not correctly evaluate $T_E$ (The Earliest Time), since it does not suggest the way how to determine the sequence of the nodes activities that calculate the $T_E$. Also, the sequence of the network diagram activities obtained from CPM cannot be visually represented, and hence Lucko suggested an algorithm which undergoes 9 stages. On the other hand, the suggested algorithm, first of all, decides the sequence in advance, by reallocating the nodes into levels after Breadth-First Search of the network diagram that is previously designed. Next, it randomly chooses nodes of each level and immediately determines the critical path only after calculation of $T_E$. Finally, it enables the representation of the execution sequence of the project activity to be seen precisely visual by means of a small movement of $T_E$ of the nodes that are not belonging to the critical path, on basis of the $T_E$ of the nodes which belong to the critical path. The suggested algorithm has been proved its applicability to 10 real project data. It is able to get the critical path from all the projects, and precisely and visually represented the execution sequence of the activities. Also, this has advantages of, firstly, reducing 5 stages of CPM into 1, simplifying Lucko's 9 stages into 2 stages that are used to clearly express the execution sequence of the activities, and directly converting the representation into PERT/GANTT chart.

Media Habits of Sensation Seekers (감지추구자적매체습관(感知追求者的媒体习惯))

  • Blakeney, Alisha;Findley, Casey;Self, Donald R.;Ingram, Rhea;Garrett, Tony
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • Understanding consumers' preferences and use of media types is imperative for marketing and advertising managers, especially in today's fragmented market. A clear understanding assists managers in making more effective selections of appropriate media outlets, yet individuals' choices of type and use of media are based on a variety of characteristics. This paper examines one personality trait, sensation seeking, which has not appeared in the literature examining "new" media preferences and use. Sensation seeking is a personality trait defined as "the need for varied, novel, and complex sensations and experiences and the willingness to take physical and social risks for the sake of such experiences" (Zuckerman 1979). Six hypotheses were developed from a review of the literature. Particular attention was given to the Uses and Gratification theory (Katz 1959), which explains various reasons why people choose media types and their motivations for using the different types of media. Current theory suggests that High Sensation Seekers (HSS), due to their needs for novelty, arousal and unconventional content and imagery, would exhibit higher frequency of use of new media. Specifically, we hypothesize that HSS will use the internet more than broadcast (H1a) or print media (H1b) and more than low (LSS) (H2a) or medium sensation seekers (MSS) (H2b). In addition, HSS have been found to be more social and have higher numbers of friends therefore are expected to use social networking websites such as Facebook/MySpace (H3) and chat rooms (H4) more than LSS (a) and MSS (b). Sensation seekers can manifest into a range of behaviors including disinhibition,. It is expected that alternative social networks such as Facebook/MySpace (H5) and chat rooms (H6) will be used more often for those who have higher levels of disinhibition than low (a) or medium (b) levels. Data were collected using an online survey of participants in extreme sports. In order to reach this group, an improved version of a snowball sampling technique, chain-referral method, was used to select respondents for this study. This method was chosen as it is regarded as being effective to reach otherwise hidden population groups (Heckathorn, 1997). A final usable sample of 1108 respondents, which was mainly young (56.36% under 34), male (86.1%) and middle class (58.7% with household incomes over USD 50,000) was consistent with previous studies on sensation seeking. Sensation seeking was captured using an existing measure, the Brief Sensation Seeking Scale (Hoyle et al., 2002). Media usage was captured by measuring the self reported usage of various media types. Results did not support H1a and b. HSS did not show higher levels of usage of alternative media such as the internet showing in fact lower mean levels of usage than all the other types of media. The highest media type used by HSS was print media, suggesting that there is a revolt against the mainstream. Results support H2a and b that HSS are more frequent users of the internet than LSS or MSS. Further analysis revealed that there are significant differences in the use of print media between HSS and LSS, suggesting that HSS may seek out more specialized print publications in their respective extreme sport activity. Hypothesis 3a and b showed that HSS use Facebook/MySpace more frequently than either LSS or MSS. There were no significant differences in the use of chat rooms between LSS and HSS, so as a consequence no support for H4a, although significant for MSS H4b. Respondents with varying levels of disinhibition were expected to have different levels of use of Facebook/MySpace and chat-rooms. There was support for the higher levels of use of Facebook/MySpace for those with high levels of disinhibition than low or medium levels, supporting H5a and b. Similarly there was support for H6b, Those with high levels of disinhibition use chat-rooms significantly more than those with medium levels but not for low levels (H6a). The findings are counterintuitive and give some interesting insights for managers. First, although HSS use online media more frequently than LSS or MSS, this groups use of online media is less than either print or broadcast media. The advertising executive should not place too much emphasis on online media for this important market segment. Second, social media, such as facebook/Myspace and chatrooms should be examined by managers as potential ways to reach this group. Finally, there is some implication for public policy by the higher levels of use of social media by those who are disinhibited. These individuals are more inclined to engage in more socially risky behavior which may have some dire implications, e.g. by internet predators or future employers. There is a limitation in the study in that only those who engage in extreme sports are included. This is by nature a HSS activity. A broader population is therefore needed to test if these results hold.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

A Workflow Determinacy Decision Mechanism (워크플로우 결정성 판단 메커니즘)

  • Chung, Woo-Jin;Kim, Kwang-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The primary tasks of a workflow management system specify workflow models with respect to resource, control-flow, data-flow, functional, and operational perspectives, and to enact their workcases (workflow instances). In terms of enacting workflow models, the essential criterion grading the quality of the system is "how much is the system able to guarantee the correctness of workflow models' enactment?". Particularly, the workflow determinacy problem, which may be caused by the interference of the control-flow and the data-flow specifications, is the most challenging issue in guaranteeing the correctness of the system. We are able to solve the problem by either of the following two approaches-analysis of workflow model and verification of workflow enactment. In the paper, we propose a technique that guarantee the system's correctness through verifying workflow enactment. In other words, the technique is able to detect the conflicts of control-flow and data-flow enactments existing on a workflow model, which causes the system to be non-determinant in enacting workflow models. Finally, by applying the technique to the e-Chautauque workflow management system developed by the authors' research group, we prove that the technique is a feasible solution for the workflow determinacy problem.

  • PDF

A Study on the Estimation of Click Through Rates from Internet Search Results and their Value in the Evaluation of the Attractiveness of a Business Idea (사업 아이디어 매력도 평가를 위한 인터넷 검색엔진 광고 클릭률 추정에 관한 연구)

  • Shim, Jae-Hu;Choi, Myeong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1468-1474
    • /
    • 2010
  • The establishment of a successful business must be preceded by comprehensive entrepreneurial preparation and research, as well as the development of a truly attractive business idea. Research to-date has tended to be based solely on factors relating to entrepreneurial activity or business performance. Research into the development and evaluation of a business idea has been insufficient. The purpose of this research is to propose a methodology for evaluating the attractiveness of a business idea objectively. This research measures the attractiveness of a business idea by the click through rate (CTR) to a website generated by specific keyword entry into internet search engines. The attractiveness of a business idea can be presented by the formula: number of relevant keyword searches x CTR on search results. As the number of searches for individual keywords is published by the search engines and it is possible to estimate CTRs for specific search results, we can objectively evaluate the attractiveness of a business idea. By analyzing keyword search data and CTRs obtained from search engines over a one month period, 1124 keywords that relate to foreign language education have been identified. A regression formula has also been derived, predicting the click through rate for search results. This research and its findings can be used to raise the success rates of new businesses; proposing objective guidelines for business idea development and evaluation. It is particularly meaningful because it introduces a new methodology to the arena.

Analysis for the Correlations between health Problems and Computer Game Needs in the Elderly (노인들의 건강문제와 컴퓨터 게임 요구도의 상관성 분석)

  • Lim, Kyung-Choon;Lee, Yoon-Jung;Ahn, Joon-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.475-486
    • /
    • 2009
  • Regular activity program is needed for managing chronic disease and obesity and preventing falls as a nursing intervention. It seems that serious game will be very important for older people to keep them active with fun to improve their health. This study was conducted to explore the correlations between health problems and computer game needs in the elderly. This was a cross-sectional study. A questionnaire was developed and administered to a convenience sample of adults who are older than 55 years, recruited from several places through trained research assistants and research center that has online pools in Korea. 778 subjects (mean age: $61.4\;{\pm}\;5.6$) were participated in this study. The majority of subjects was male (68.6%). We found that there was higher needs for exercise or serious game in the group of ma1e(55.4%), below undergraduate(66.2%), under two family members(32.5%), over 350,000 won of pocket money/month (40.1%), mild depressive symptom (51.7%), and online responser(68%). Especially, they wanted to overcome physical limitations through games. Higher education, more experiences and skills of using computer/internet was statistically and positively significant to the needs for exercise or serious game. In conclusion, there exists a potential market within this demographic group for the use of serious games. Thus, we need to develop senior games in Korean to improve quality of life and health promotion.

Implementation of Uncertainty Processor for Tracking Vehicle Trajectory (차량 궤적 추적을 위한 불확실성 처리기 구현)

  • Kim, Jin-Suk;Kim, Dong-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1167-1176
    • /
    • 2004
  • Along the advent of Internet technology, the computing environment has been considerably changed in many application domains. Especially, a lot of researches for e-Logistics have been done for the last 3 years. The e-Logistics means the virtual business activity and service architecture among the logistics companies based on the Internet technology. To construct effectively the e-Logistics framework, researches on the development of the Moving Object Technology(MOT) including GPS and GIS with spatiotemporal databases technique so far has been done The Moving Object Technology stands for the efficient management for the spatiotemporal objects such as vehicles, airplanes, and vessels which change continuously their spatial location along with time flows. However, most systems manage just only the location information detected lately by many reasons so that the uncertainty processing for the past and future location of the moving objects is still very hard. In this paper, we propose the moving object uncertainty model and system design for e-Logistics applications. The MOMS architecture in e-Logistics is suggested and the detailed explain of sub-systems including the uncertainty processor of moving objects is described. We also explain the comprehensive examples of MOMS and uncertainty processing in Delivery Parcel Application that is one of major application of e-Logistics domain.

Detection of Complex Event Patterns over Interval-based Events (기간기반 복합 이벤트 패턴 검출)

  • Kang, Man-Mo;Park, Sang-Mu;Kim, Sank-Rak;Kim, Kang-Hyun;Lee, Dong-Hyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.201-209
    • /
    • 2012
  • The point-based complex event processing handled an instantaneous event by using one time stamp in each event. However, the activity period of the event plays the important role in the field which is the same as the finance, multimedia, medicine, and meteorology. The point-based event is insufficient for expressing the complex temporal relationship in this field. In the application field of the real-time world, the event has the period. The events more than two kinds can be temporally overlapped. In addition, one event can include the other event. The relation about the events of kind of these can not be successive like the point-based event. This thesis designs and implements the method detecting the patterns of the complex event by using the interval-based events. The interval-based events can express the overlapping relation between events. Furthermore, it can include the others. By using the end point of beginning and end point of the termination, the operator of interval-based events shows the interval-based events. It expresses the sequence of the interval-based events and can detect the complex event patterns. This thesis proposes the algorithm using the active instance stack in order to raise efficiency of detection of the complex event patterns. When comprising the event sequence, this thesis applies the window push down technique in order to reduce the number of intermediate results. It raises the utility factor of the running time and memory.

A Study on the Clustering method for Analysis of Zeus Botnet Attack Types in the Cloud Environment (클라우드 환경에서 제우스 Botnet 공격 유형 분석을 위한 클러스터링 방안 연구)

  • Bae, Won-il;Choi, Suk-June;Kim, Seong-Jin;Kim, Hyeong-Cheon;Kwak, Jin
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • Recently, developments in the various fields of cloud computing technology has been utilized. Whereas the demand for cloud computing services is increasing, security threats are also increasing in the cloud computing environments. Especially, in case when the hosts interconnected in the cloud environments are infected and propagated through the attacks by malware. It can have an effect on the resource of other hosts and other security threats such as personal information can be spreaded and data deletion. Therefore, the study of malware analysis to respond these security threats has been proceeded actively. This paper proposes a type of attack clustering method of Zeus botnet using the k-means clustering algorithm for malware analysis that occurs in the cloud environments. By clustering the malicious activity by a type of the Zeus botnet occurred in the cloud environments. it is possible to determine whether it is a malware or not. In the future, it sets a goal of responding to an attack of the new type of Zeus botnet that may occur in the cloud environments.