• Title/Summary/Keyword: Internal displacement

Search Result 537, Processing Time 0.029 seconds

A Study on the Size of Buildings for Utilizing the Limit Slenderness Ratio Approximation Equation of Outrigger Structural System (아웃리거 구조시스템의 한계세장비 근사식 활용을 위한 건물규모에 대한 연구)

  • Yang, Jae-Kwang;Choi, Hyun-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.19-26
    • /
    • 2019
  • To construct buildings on limited land, the size of the building is important. The development process needs to be minimized because determining the size of a structurally safe building at the planning stage incurs considerable time and cost. This study proposes the Limit Slenderness Ratio Approximation Equation. This study examined an outrigger structure system among several systems proposed for controlling the lateral displacement in tall buildings. This study compared the Limit Slenderness Ratio Approximation Equation with the approximate equation by changing the variables of the building model, and examined the size of the building using the approximate Equation. As an analysis program, the MAIDAS architectural structural analysis program was used to conduct model-specific analysis. The appropriate scale of the building to minimize the error between the approximate value calculated by the Limit Slenderness Ratio Approximation Equation and the analysis result of the structural analysis program is as follows. As the number of outrigger installation increases, the error can be reduced; the ratio of the cores is reasonable, from 20% to 30%, and the arrangement of the column is suitable only for the outer column without an internal column.

Development of Self-trainer Fitness Wear Based on Silicone-MWCNT Sensor (실리콘-탄소나노튜브 센서 기반의 셀프트레이너 피트니스 웨어 개발)

  • Cho, Seong-Hun;Kim, Kyung-Mi;Cho, Ha-Kyung;Won, You-Seuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.493-503
    • /
    • 2018
  • Recently, as living standards have improved, many people are becoming more interested in health, and self-training is increasing through exercise to prevent and manage pre-illness. In general, an imbalance of muscles causes asymmetry of posture, which can cause various diseases by accompanying an adjustment force, circulation action, displacement of internal organs, etc.. In this study, the development of fitness software that can be self - training among smart wears has attracted considerable attention in recent years. In this study, a technology was proposed for the commercialization of self - trainer fitness wear by a simulation through Android - based applications. Self - trainer fitness software was developed by combining a conductive polymer, fashion design, sewing, and electric and electronic technology to monitor the unbalance of the muscles during exercise and make smart wear that can calibrate the asymmetry by oneself. In particular, a polymer sensor was fabricated by deriving the optimal MWCNT concentration, and the electrode signal was collected by attaching the electrode to the optimal position, where the electrode signal line using the conductive fiber was designed and attached to collect the signal. A signal module that converts the bio-signals collected through electrical signal conversion and transmits them using Bluetooth communication was designed and manufactured. Self-trainer fitness software that can be commercialized was developed by combining noise cancellation with Android-based self-training application using a software algorithm method.

A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type (말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구)

  • Shin, Hyun Young;Kim, Byung Il;Kim, Kyoung O;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.5-19
    • /
    • 2014
  • In this study, the structural analysis is performed on the method of shallow block and deep cement mixing pile, and then their characteristics and associated behaviors were analyzed. In the case of continuous beam analysis, the predicted settlement was very small, and shear force and bending stress are somewhat overestimated. The frame method is similar to numerical analysis in the internal force shallow block and long pile, but because the settlement of pile is underestimated, the additional calculation using the reaction of the long pile is necessary. For soil arching method and piled raft foundation method, the excessive axial force of long pile was predicted because the load sharing of pile is very large compared to the other methods. In the behavior of the shallow block and deep pile method, the settlement of shallow block and contact pressure are much in the center than the edge. In the estimating method considering the interaction between improved material and ground, the load sharing of the soil-cement pile ranges from 20% to 45%, and the stress ratio is 2.0~5.0 less than piled DCM. The maximum member forces at the boundary conditions of pile head are similar, but in fixed head the axial force and vertical displacement are different in accordance with pile arrangement.

A Study on the Structural Optimization for Geodesic Dome (지오데식 돔의 구조최적화에 대한 연구)

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • This paper deals with basic theories and some numerical results on structural optimization for geodesic dome. First of all, the space efficiency of geodesic dome is investigated by using the ratio of icosahedron's surface area to the internal volume enclosed by it. The procedure how to create the geodesic dome is also provided in systematic way and implemented and utilized into the design optimization code ISADO-OPT. The mathematical programming technique is introduced to find out the optimum pattern of member size of geodesic dome against a point load. In this study, total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of geodesic dome are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The SLP, SQP and MFDM available in the optimizer DoT is used to search optimum member size patterns of geodesic dome. It is found to be that the optimum member size pattern can be efficiently obtained by using the proposed design optimization technique and numerical results can be used as benchmark test as a basic reference solution for design optimization of dome structures.

  • PDF

A TOMOGRAPHIC STUDY OF THE CONDYLE POSITION IN TEMPOROMANDIBULAR DISORDERS (단층촬영을 이용한 악관절 기능장애 환자의 과두위에 관한 연구)

  • Choi Sung Youn;Ryu Young Kyu
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.81-136
    • /
    • 1988
  • The aim of this study was to determine whether T.M.J. tomographic examination yielded significant differences in condyle positions among asymptomatic, myalgia, derangement, and arthrosis groups of T.M.J. disorders. The author obtained sagittal linear tomograms of right and left T.M.Js. of 36 asymptomatic, 22 myalgia, 54 derangement, and 31 arthrosis patients taken at serial lateral, central, and medial sections in the intercuspal position after submentovertex radiographs analyzed. With the dual linear measurements of the posterior and anterior interarticular space, condyle positions were mathematically expressed as proportion. All data from these analysis was recorded and processed statistically. The results were obtained as follows. 1. In asymptomatic group, radiographically concentric condyle position was found in 50.0% to 65.4% of subjects, with a substantial range of variability. No significant differences existed between men and women and also between right and left T.M.Js. for condyle position. 2. In women, significant difference for mean condyle position of left lateral section of each diagnostic category existed between derangement and myalgia groups (P<.05). Also that of left central section existed between derangement and myalgia groups, and that of left medial section existed between derangement and myalgia groups (P<.05). 3. In main-symptom side, condyle position in myalgia group was more concentric, and condyle position in derangement group was more posterior. This showed significant differences between derangement and myalgia groups in lateral, central, and medial sections of main- symptom sides, and only between derangement and myalgia groups in central section of contra-lateral sides (P<.05). Condyle position in arthrosis group was broadly distributed among all positions. 4. In contra-lateral side, significant difference for mean condyle position of central section of each symptomatic group existed between derangement and myalgia groups (P<.05). Condyle position in derangement group was more posterior. The distribution of the condyle position of contra-lateral side in patients with unilateral symptoms was similar to that of main-symptom side in each symptomatic group. No significant difference existed between main-symptom and contra-lateral sides. 5. For internal derangement subgroups, condyle position in reducible disc displacement group was more posterior than non-reciprocal and locking groups, but there was no significant difference. 6. From 16 to 25 years, significant difference for mean condyle position of medial section of main-symptom side of each symptomatic group existed between myalgia and derangement groups (P<.05).

  • PDF

Arthroscopic Posterior Capsular Shaft for Traumatic Recurrent Unidirectional Posterior Subluxation of the Shoulder (외상으로 인한 재발성 단방향 견관절 후방 아탈구의 관절경을 이용한 후방낭 이동술)

  • Kim, Seung-Ho;Ha, Kwon-Ick;Yoo, Jae-Chul;Lee, Yong-Seuk;Lee, Hui-Dong
    • Clinics in Shoulder and Elbow
    • /
    • v.6 no.1
    • /
    • pp.55-66
    • /
    • 2003
  • Background: The purpose of this study was to evaluated results of arthroscopic treatment of the traumatic recurrent unidirectional posterior subluxation. Materials and Methods: We treated twenty-seven patients who had traumatic recurrent unidirectional posterior subluxation of the shoulder by arthroscopic labral repair and posterior capsular shift and prospectively evaluated for a mean of thirty-nine months (range,24 to 85 months). Patients who had posteroinferior instability, multidirectional instability, atraumatic onset, or revision cases were excluded. There were twenty-five male and two female patients with the mean age of twenty-one years (range, 14 to 33 years). All patients were involved in sports activity. All had a significant traumatic event prior to the onset of the instability. Stability, motion, three objective measurement (UCLA, ASES, and Rowe scores) and two subjective measurements (pain and function visual analogue scale) were evaluated. Results: The most common finding in magnetic resonance image-arthrogram was separation of the posteroinferior labrum without displacement in 9 patients, In arthroscopic examination, all patients had one or more lesions in the posterior inferior labrum and capsule. The most common finding was incomplete stripping of the posterior inferior labrum (18 patients). The posteroinferior capsule subjectively appeared to be stretched in twenty-two patients. At follow-up, all patients had improved shoulder function and scores(p < 0.01). All patients had stable shoulder by subjectivel and objectivel measurements, except one patient who had recurrent subluxation. All but one patient with postoperative recurrence were able to return to their prior sports activity with little or no limitation. Twenty-four patients were graded as having more than 90% of shoulder function. Their were twenty-one excellent, five good, and one fair UCLA. scores. Pain sore improved from 4.5 to 0.2 point(p : 0.0001). Mean loss internal rotation was one vertebral level. None had operative complications. Conclusion: In conclusion, treatment outcomes of the traumatic unidirectional recurrent posterior subluxation are consistently reliable with respect to the stability, pain relief, and functional restoration by the arthroscopic posterior capsular shift procedure.

Thermal Behavior and Structral Efficiency of Rahmen with Sliding-Girder (슬라이딩 거더를 가진 라멘의 온도거동과 구조효율)

  • Jeong, Dal-Yeong;Jeong, Chang-Hyun;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Although the temperature load is an important load among the various loads affecting the behaviors of general rahmen-type temporary bridges (GRTB), no study of the thermal load has been carried out. In the case of GRTB, horizontal displacement should be free, and the generated internal force should be minimized to reduce stress due to a temperature load. Sliding girder type bridge (SGTB) allows the axial deformation due to thermal load, and decreases the axial stress and delivers bending stress. This study examined the temperature behavior of an SGTB. Structural analysis was carried out for four types of spans (eq, 10, 20, 30, and 40m) and three types of pier heights (eq, 2, 4, and 6m) along with the GRTB. The applied loads were a fixed vertical load and an axial temperature load. The friction coefficient was 0.4, which is a representative value of a steel girder. Consequently, the stress of the SGTB increased with increasing span length, regardless of the temperature load. The stress of the GRTB increased with increasing temperature and span length. Compared to the GRTB, the stress of the SGTB decreased by 20% to 50% at the center of the girder and by 50% to 90% at the bottom of the pier. This could secure the structural efficiency compared to the GRTB with the same specifications.

Numerical Study on Shotcrete Lining with Steel Reinforcement Using a Fiber Section Element (화이버 단면 요소를 이용한 강재 보강된 숏크리트 라이닝의 수치해석적 연구)

  • Kim, Jeong Soo;Yu, Jee Hwan;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.919-930
    • /
    • 2014
  • In this study, the load capacities and behaviors of a shotcrete member with steel supports, as composite member, are investigated numerically by using a fiber section element. The cross section of a shotcrete lining with steel support is divided into a bundle of fibers, which are allocated nonlinear stress-strain relations and used for determining internal forces. To verify the used approach of the finite element method for shotcrete with steel supports, the load-displacement relations of shotcrete lining obtained by numerical analysis are compared with existing experimental results and are analyzed with the stress distribution of the shotcrete and steel support obtained numerically. As a result, it is shown that the proposed approach can predict the load capacities of each material and the overall nonlinear behavior of shotcrete lining with steel supports. The change of location of the neutral axis and the flexural resistance ratio of each material are also derived from the stress distribution of the cross section of the shotcrete lining with steel supports. From the results, it is concluded that the flexural resistance performance of steel support should be considered in shotcrete lining design.

Clinical Experiences of Facial Asymmetries in Zygomaticomaxillary Complex Bone Fracture Patients (관골상악골 복합체 골절 환자에서의 안면 비대칭에 대한 임상경험)

  • Kang, Nak-Heon;Choi, Sang-Mun;Kim, Joo-Hak;Song, Seung-Han;Oh, Sang-Ha
    • Archives of Plastic Surgery
    • /
    • v.38 no.2
    • /
    • pp.161-165
    • /
    • 2011
  • Purpose: Zygomaticomaxillary complex (ZMC) fracture is one of the most common facial injuries after facial trauma. As ZMC composes major facial buttress, it is a key element of the facial contour. So, when we treat these fractures, the operator should have a concern with the symmetry to restore normal appearance and function. But sometimes, unfavorable results may occur. The aim of this study is to analyze the unsatisfied midfacial contour after ZMC fractures reduction retrospectively and to point out the notandum. Methods: 369 patients, treated for fractures of the ZMC were included in the study. After the operation, such as open reduction and internal fixation (ORIF with titanium or absorbable materials), open reduction, and closed reduction, midfacial contour was evaluated with plain films and 3-dimensional computed tomography. And unfavorable asymmetric midfacial contours were correcterd by secondary correction and re-evaluated. Gross photographs were obtained at outpatient clinic. Results: Total of 38 patients had got a facial asymmetry and among of them 24 patients were treated secondary revisional ORIF operations for correction of unfavorable result of after primary reduction. Two of them had received tertiary operations, three patients had got osteotomy more than after one year and six patients had got minor procedures. The etiology of asymmetry were lateral displaced simple fracture of arch (n=2), lateral displaced comminuted fracture of arch (n=6), comminuted arch fracture combined posterior root fracture (n=9), and communited arch and body fracture (n=12), severely contused soft tissue (n=9). After the manipulations outcomes were acceptable. Conclusion: To prevent the asymmetry in ZMC fracture reduction, complete analysis of fracture, choice of appropriate operation technique, consider soft tissue, and secure of zygoma position are important. Especially, we should be more careful about communited fracture of zygomatic body and lateral displacement, root fracture of zygomatic arch. Because they are commom causes that make facial asymmetry. To get optimal result, ensure the definite bony reduction.

Engineering Characteristics of the Light Weight Soil Using Phosphogypsum and EPS Beads (인산석고-EPS 조각을 활용한 경량혼합토의 공학적 특성)

  • Kim, Youngsang;Suh, Dongeun;Kim, Wonbong;Lee, Woobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.19-25
    • /
    • 2009
  • The current study developed light-weighted mixed soil that can solve problems related with soft soil such as ground subsidence, sliding and lateral displacement of ground. By reducing weight of reclaimed soil through mixing phosphogypsum and recycled EPS beads with the weathered granite soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test, and direct shear test were performed and engineering properties were reviewed in order to assess applicability of the light-weighted mixed soil for roads and abutment and various back-filling materials at the reclamation area. Based on the laboratory test results, it was found that the maximum dry unit weight of the light-weighted soil ranges $14.32{\sim}15.79kN/m^3$ and the optimum water content ranges 21.91~24.23%, which means there is 11~19.3% weight decrease effect when comparing with general weathered granite soil. Also it was found that the corrected CBR value ranges 10.4~18.4% satisfying the domestic regulations on road subgrade and back-filling material. In addition, as for shear strength parameter, cohesion ranges 10.79~18.64 kPa and internal frictional angle ranges $35.4{\sim}37.2^{\circ}$, which are similar with those of general construction soil and back-filling material used in Korea. So it can be concluded that light-weighted mixed soil with phosphogypsum can be used effectively for soft reclamation ground as actual filling material and back-filling material. From the current study, it was found that light-weighted mixed soil with phosphogypsum has not only weight reduction effect, but also has no special problems in shear strength and bearing capacity. Therefore, it is expected that phosphogypsum can be recycled in bulk as road subgrade and back-filling material at the reclamation area.

  • PDF