DOI QR코드

DOI QR Code

Numerical Study on Shotcrete Lining with Steel Reinforcement Using a Fiber Section Element

화이버 단면 요소를 이용한 강재 보강된 숏크리트 라이닝의 수치해석적 연구

  • 김정수 (연세대학교 토목환경공학과) ;
  • 유지환 (연세대학교 토목환경공학과) ;
  • 김문겸 (연세대학교 토목환경공학과)
  • Received : 2013.12.06
  • Accepted : 2014.04.08
  • Published : 2014.06.01

Abstract

In this study, the load capacities and behaviors of a shotcrete member with steel supports, as composite member, are investigated numerically by using a fiber section element. The cross section of a shotcrete lining with steel support is divided into a bundle of fibers, which are allocated nonlinear stress-strain relations and used for determining internal forces. To verify the used approach of the finite element method for shotcrete with steel supports, the load-displacement relations of shotcrete lining obtained by numerical analysis are compared with existing experimental results and are analyzed with the stress distribution of the shotcrete and steel support obtained numerically. As a result, it is shown that the proposed approach can predict the load capacities of each material and the overall nonlinear behavior of shotcrete lining with steel supports. The change of location of the neutral axis and the flexural resistance ratio of each material are also derived from the stress distribution of the cross section of the shotcrete lining with steel supports. From the results, it is concluded that the flexural resistance performance of steel support should be considered in shotcrete lining design.

본 연구에서는 화이버 단면 요소를 이용하여 강재 보강된 숏크리트 합성부재의 하중지지력과 거동을 수치해석적으로 평가하였다. 강재 보강된 숏크리트 합성단면은 여러 개의 화이버로 분할되고, 각 화이버에 정의된 비선형 응력-변형률 관계에 의해 내력을 결정하게 된다. 사용된 유한요소모델의 검증을 위해 수치해석에 의한 숏크리트 라이닝의 하중-변위 변화를 기존 실험연구결과와 비교하였고, 이를 수치해석에 의한 강재와 숏크리트의 응력분포를 이용하여 함께 분석하였다. 그 결과 제안된 해석방법이 강지보와 숏크리트의 재료 비선형성을 고려하여 전체 거동과 강재 및 숏크리트 각각의 하중 저항력을 실질적으로 평가할 수 있음을 보였다. 또한, 단면 내 응력분포로부터 중립축 변화와 강재 및 숏크리트 각각의 휨 하중 분담률을 도출하였다. 하중 변화에 따른 강재의 휨 하중 분담률 변화를 확인하였고, 이를 통해 숏크리트 라이닝 설계에 강재의 휨 저항성능을 고려하는 것이 필요하다고 판단하였다.

Keywords

References

  1. Carranza-Torres, C. and Diederich, M. (2009). "Mechanical analysis of circular liners with particular reference of composite supports. For example, liners consisting of shotcrete and steel sets." Tunnelling and Underground Space Technology, Vol. 24, No. 5, pp. 506-532. https://doi.org/10.1016/j.tust.2009.02.001
  2. Cho, C. G., Kwon, M. H. and Jung, H. H. (2005). "An highly accurate algorithm of nonlinear beam-column fiber finite element with non-prismatic steel sections." Journal of the Korean Society of Civil Engineers, Vol. 25, No. 4A, pp. 611-619 (in Korean).
  3. Elsaigh, W. A., Robberts, J. M. and Kearsley, E. P. (2011). "Modeling the behavior of steel-fiber reinforced concrete ground slabs. I: Development of Material Model." Journal of Transportation Engineering, ASCE, Vol. 137, No. 12, pp. 882-888. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000276
  4. Ha, T. W., Kim, D. Y., Shin, Y. W. and Yang, H. S. (2008). "Evaluation methods of shotcrete lining stresses considering steel rib capacities by two-dimensional numerical analysis." Tunnelling Technology, Korean Tunnelling and Underground Space Association, Vol. 10, No. 3, pp. 269-282 (in Korean).
  5. Hajjar, J. F., Molodan, A. and Schiller, P. H. (1998). "A distributed plasticity model for cyclic analysis of concrete filled steel tube beam-columns and composite frames." Engineering Structures, Vol. 20, No. 4-6, pp. 398-412. https://doi.org/10.1016/S0141-0296(97)00020-5
  6. Lee, J. S. and Choi, K. C. (2003). "Ultimate analysis of reinforced concrete column using fibered element." Proc. of Civil Expo 2013, KSCE, Jeongseon, Korea, pp. 1263-1267 (in Korean).
  7. Lee, S. D., Park, Y. J., Lim, D. C., Son, J. H., You, K. H. and Kim, S. M. (2008). "A numerical study on the behavior of shotcrete reinforced by various steel supports." Tunnel & Underground Space, Korean Society for Rock Mechanics, Vol. 18, No. 3, pp. 226-238 (in Korean).
  8. Leung, C. K. Y., Lai, R. and Lee, A. Y. F. (2005). "Properties of wet-mixed fiber reinforced shotcrete and fiber reinforced concrete with similar composition." Cement and Concrete Research, Vol. 35, No. 4, pp. 788-795. https://doi.org/10.1016/j.cemconres.2004.05.033
  9. Moon, S. H., Shin, Y. W., Kim, S. H. and Yoo H. K. (2012). "A study on load bearing capacity of composite member with steel rib and shotcrete in NATM tunnel." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5, pp. 221-229 (in Korean). https://doi.org/10.12652/Ksce.2012.32.5C.221
  10. Park, J. W. and Kim, S. E. (2008). "Fiber finite element mixed method for nonlinear analysis of steel-concrete composite structures." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 6A, pp. 789-798 (in Korean).
  11. Park, Y. J., Lee, J. K., Noh, B. K., You, K. H. and Lee, S. D. (2010). "Flexural behavior of reinforced ribs of shotcrete for various configurations of reinforcements." Tunnel & Underground Space, Korean Society for Rock Mechanics, Vol. 20, No. 3, pp. 169-182 (in Korean).
  12. Spacone, E., Filippou, F. C. and Taucer, F. F. (1996a). "Fibre beam-column model for non-linear analysis of R/C frames: Part I. Formulation." Earthquake Engineering and Structural Dynamics, Vol. 25, No. 7, pp. 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  13. Spacone, E., Filippou, F. C. and Taucer, F. F. (1996b). "Fibre beam-column model for non-linear analysis of R/C frames: Part II. Applications." Earthquake Engineering and Structural Dynamics, Vol. 25, No. 7, pp. 727-742. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<727::AID-EQE577>3.0.CO;2-O