• 제목/요약/키워드: Internal displacement

검색결과 538건 처리시간 0.035초

Construction stage analysis of three-dimensional cable-stayed bridges

  • Atmaca, Barbaros;Ates, Sevket
    • Steel and Composite Structures
    • /
    • 제12권5호
    • /
    • pp.413-426
    • /
    • 2012
  • In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one $\ddot{e}$ shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

초음속 디퓨져에서 충격파의 진동 (1) -수직충격파의 순간변위 측정- (Shock-Wave Oscillation in a Supersonic Diffuser -Displacement Measurement of Mormal Shock-Wave-)

  • 김희동;엄용균;권순범
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.933-945
    • /
    • 1994
  • A shock-wave in a supersonic flow can be theoretically determined by a given pressure ratio at upstream and downstream flowfields, and then the obtained shock-wave is stable in its position. Under the practical situation in which the shock-wave interacts with the boundary layer along a solid wall, it cannot, however, be stable even for the given pressure ratio being independent of time and oscillates around a time-mean position. In the present study, oscillations of a weak normal shock-wave in a supersonic diffuser were measured by a Line Image Sensor(LIS), and they were compared with the data of the wall pressure fluctuations at the foot of the shock-wave interacting with the wall boundary layer. LIS was incorporated into a conventional schlieren optical system and its signal, instantaneous displacement of the interacting shock-wave, was analyzed by a statistical method. The results show that the displacement of an oscillating shock-wave increase with the upstream Mach number and the dominant frequency components of the oscillating shock-wave are below 200 Hz. Measurements indicated that shock-wave oscillations may not entirely be caused by the boundary layer separation. The statistical properties of oscillations appeared, however, to be significantly affected by shock-induced separation of turbulent boundary layer.

Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.43-68
    • /
    • 2007
  • Using the Mindlin-Reissner plate theory, many quadrilateral plate bending elements have been developed so far to analyze thin and moderately thick plate problems via displacement based finite element method. Here new formulation has been made to analyze thin and moderately thick plate problems using force based finite element method called Integrated Force Method (IFM). The IFM is a novel matrix formulation developed in recent years for analyzing civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper the force based new bilinear quadrilateral plate bending element (MQP4) is proposed to analyze the thin and moderately thick plate bending problems using Integrated Force Method. The Mindlin-Reissner plate theory has been used in the formulation of this element which accounts the effect of shear deformation. Standard plate bending benchmark problems are analyzed using the proposed element MQP4 via Integrated Force Method to study its performance with respect to accuracy and convergence, and results are compared with those of displacement based 4-node quadrilateral plate bending finite elements available in the literature. The results are also compared with the exact solutions. The proposed element MQP4 is free from shear locking and works satisfactorily in both thin and moderately thick plate bending situations.

상용 Single Chip Solution을 이용한 정전용량형 변위 센서 신호 처리 모듈 개발 (Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors Using a Commercial Single Chip Solution)

  • 김종안;김재완;엄태봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.31-32
    • /
    • 2006
  • A signal conditioning circuit for capacitive sensors was developed using a commercial single chip solution. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. Up to now, several companies already have succeeded in the development of the capacitive sensors system and they are commercially available in the market. In this research, to construct the signal processing circuits more easily and simply, we used a universal LVDT signal conditioner (AD698). Since the AD698 provides one chip solution for a basic signal processing including modulation and demodulation using various internal components, we can build the processing circuits successfully with minimal additional circuits: a compensation circuits for the drift caused by the bias current of OP amplifiers and a fine adjustment circuit for the elimination of nonlinearity. The signal processing circuits shows nonlinearity less than 0.05% in the comparison with a laser interferometer.

  • PDF

승용차용 레이디얼 타이어의 동적 특성에 관한 연구 (A Study of the Dynamic Characteristics of a Passenger Radial Tire)

  • 김두만;김상욱
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.724-734
    • /
    • 1986
  • 본 연구에서는 타이어의 동적설계의 기초자료를 제시하는데 그 목적이 있다. 해석적 방법으로는 복합막트로이드 유한요소를 이용하여 타이어의 고유진동수 및 진동 모우드를 구하였으며, 그 정확성을 입증하기 위하여 멀디찬널 F.F.T.분소기를 이용한 실험적 결과 및 G.R. Potts의 해석결과와 비교하였다.

가변 용적형 사판식 피스톤 펌프의 회전 속도 조절에 의한 정압 제어 소비 동력 절감 (Reduction of Power Consumption for Constant Pressure Control of Variable Swash Plate-type Piston Pump by Varying the Pump Speed)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권4호
    • /
    • pp.53-60
    • /
    • 2014
  • This paper proposes a control scheme to reduce the power consumption of a variable displacement swash-plate type piston pump supplying oil to a valve-controlled hydraulic cylinder at constant pressure. Whenever flow rate demand was absent, the swash plate angle and the pump speed were changed to the minimum values required to compensate for the internal leakage flow. In response to command signals, the pump speed was changed in proportion to the absolute mean value of the speed component for position commands. At the same time, a pressure regulator was activated to maintain constant system pressure by precisely adjusting the pump speed with the swash plate angle fixed at the maximum. The conventional system consisting of a pressure-compensated variable displacement type pump is driven at a constant speed of 1,800rpm. By comparison, computer simulation and experimental results showed that idling power at stand-by status could be reduced by up to 70% by reducing the pump speed from 1,800rpm to 300rpm and the swash plate angle to the minimum.

측두하악관절 자기공명영상에서의 삼출에 관한 연구 (Effusion in magnetic resonance imaging of the temporomandibular joint)

  • 나경수
    • Imaging Science in Dentistry
    • /
    • 제33권1호
    • /
    • pp.1-4
    • /
    • 2003
  • Purpose : The purpose of this study was to investigate the distribution and frequency of temporomandibular joint (TMJ) effusion in magnetic resonance (MR) images of patients with disc displacements. Materials and Methods: On T2 weighted MR images of 148 TMJs taken from 74 patients presenting with TMJ pain and dysfunction, we assessed the cases showing TMJ effusion, defined as an amount of fluid that exceeded the maximum amount seen in a control group of asymptomatic volunteers. The amount of TMJ fluid was graded as: I (none or minimal), II (moderate), III (marked), and IV (extensive), according to a standard set by a reference. Disc displacement categories were also recorded. Results: Of the 148 TMJs examined in this study, 52 joints (35.1%) presented with joint effusion, 24 (16.2%) showing bilateral joint effusion. 38 joints showed upper joint space effusion, 3 showed lower joint space effusion, and 11 showed both upper and lower joint space effusion. 96 joints (64.9%) had grade I joint fluid, 27 (18.2%) grade II, 15 (10.1 %) grade III, and 10 (6.8%) grade IV. 80.0% of the joints presenting with grade IV effusion showed disc displacement without reduction. Conclusion: Joint effusion was found not only in upper, but also in lower joint spaces. The higher the effusion grade, the greater the frequency of disc displacement without reduction.

  • PDF

유한요소법을 이용한 평판의 동특성 연구 (Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method)

  • 태순호;이태연;허문회
    • 한국안전학회지
    • /
    • 제7권2호
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

REDUCED DIFFERENTIAL TRANSFORM FOR THERMAL STRESS ANALYSIS UNDER 2-D HYPERBOLIC HEAT CONDUCTION MODEL WITH LASER HEAT SOURCE

  • SUTAR, CHANDRASHEKHAR S.;CHAUDHARI, KAMINI K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권2호
    • /
    • pp.54-65
    • /
    • 2021
  • In this study, a two-dimensional thermoelastic problem under hyperbolic heat conduction theory with an internal heat source is considered. The general solution for the temperature field, stress components and displacement field are obtained using the reduced differential transform method. The stress and displacement components are obtained using the thermal stress function in the reduced differential transform domain. All the solutions are obtained in the form of power series. The special case with a time-dependent laser heat source has been considered. The problem is considered for homogeneous material with finite rectangular cross-section heated with a non-Gaussian temporal profile. The effect of the heat source on all the characteristics of a material is discussed numerically and graphically for magnesium material taking a pulse duration of 0.2 ps. This study provides a powerful tool for finding the solution to the thermoelastic problem with less computational work as compared to other methods. The result obtained in the study may be useful for the investigation of thermal characteristics in engineering and industrial applications.