• 제목/요약/키워드: Internal Pipe

검색결과 464건 처리시간 0.035초

개방형 구조의 진동형 히트파이프의 응축부 길이에 따른 추력 및 유동 가시화 (Thrust and Flow Visualization according to Length of Condenser Section of Open Pulsating Heat Pipe)

  • 손민재;최종욱
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.57-64
    • /
    • 2023
  • An open pulsating heat pipe operates continuously by inflow and outflow fluids through an open-type condenser. The open pulsating heat pipe is a device capable of obtaining the thrust due to the variation of internal pressure during phase change. Therefore, the open pulsating heat pipe is a suitable device to move fluids if the heat source such as waste heat exists. Many numerical studies have not been sufficiently conducted on the open pulsating heat pipe. In this study, the numerical analysis of the open pulsating heat pipe is performed according to the length of the condenser section. The OpenFOAM software is used to obtain the thrust and the flow visualization for the open pulsating heat pipe.

슬러리순환 자기연마법에 의한 파이프 내면의 연마특성 (The Internal Finishing Characteristics of Pipe Polished by Slurry Circulation Magnetic Abrasive Machining)

  • 노태우;박원규;여우석;서영일;최환;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.198-201
    • /
    • 2002
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, a slurry circulation system was designed and manufactured. Its finishing characteristics was experimently investigated by various effective factors such as dry, water flow, oil flow with a slurry. From the experimental results, it was found that the materal removal and surface roughness were good in oil flow with slurry. The slurry circulation system is effective on the internal finishing of non-ferromagnetic pipe(SUS304).

  • PDF

복합하중이 작용하는 국부감육배관 평가법 개발 (Development of Assessment Methodology for Locally Wall-Thinned Pipe Under Combined Loading)

  • 심도준;김윤재;김영진;박치용
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1399-1406
    • /
    • 2005
  • Recently authors have proposed a new method to estimate failure strength of a pipe with local wall thinning subject to either internal pressure or global bending. The proposed method was based on the equivalent stress averaged over the minimum ligament in the locally wall thinned region, and the simple scheme to estimate the equivalent stress in the minimum ligament was proposed, based on the reference stress concept. This paper extends the new method to combined internal pressure and global bending. The proposed method is validated against FE results for various geometries of local wall thinning under combined loading. The effect of internal pressure is also investigated in the present study. Comparison of maximum moments, predicted according to the proposed method, with published full-scale pipe test data fur locally wall-thinned pipes under combined internal pressure and global bending, shows good agreement.

자동화 장비를 이용한 대형 상수관로 갱생을 위한 코팅재료 선정 및 방법에 관한 연구 (Investigating coating material and conditions for rehabilitation of water transmission pipe using a robotic system)

  • 김진원;김동현;이영건;이세완;김두일
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.725-736
    • /
    • 2016
  • There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.

자려 진동 히트파이프의 압력 및 온도 파형 해석 (Analysis on Pressure and Temperature wave of Self Oscillating Heat Pipe)

  • 최재혁;윤두호;오철;김명환;윤석훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.43-49
    • /
    • 2000
  • Heat transfer characteristics of self oscillating heat pipe were experimentally investigated for the effect of fill charge ratios and heat loads. The heat pipe used for this study is made of copper capillary, has 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling section each have a length of 70mm. Water was used as working fluid inside heat pipe. As the experimental results, the self oscillating heat pipe was operated by self-exited oscillation and circulation of working fluid and the oscillation within the self oscillating heat pipe assumed chaotic behavior.

  • PDF

유한요소법을 이용한 곡관의 자긴가공 해석 (Autofrettage Analysis of Pipe Bend using Finite Element Method)

  • 박찬중;고승기;나의균;백태현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.637-642
    • /
    • 2008
  • Autofrettage analysis of a bend in the fuel injcetion pipe has been performed to investigate the distribution of residual stresses due to pipe bending and autofrettage processes. The pipe bending was simulated by metal forming analysis using finite element method, and residual stress distribution after bending was found. Autofrettage following the pipe bending was performed by applying the hydrostatic internal pressures of 603 MPa, 535 MPa, 500 MPa on the pipe bend, corresponding to theoretical 26 %, 14 %, 9 % overstrain levels, respectively. Residual stress distributions due to bending and autofrettage were evaluated.

  • PDF

내부유동을 갖는 파이프 진동의 스펙트럴요소해석 (Spectral Element Vibration Analysis of the Pipeline Conveying Internal Flow)

  • 오혁진;강관호;이우식
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.294-301
    • /
    • 2003
  • It is of often important to accurately predict the flow-induced vibration or dynamic instability of a pipeline conveying internal high speed flow in advance, which requires a very accurate solution method. In this study, first the dynamic equations for the axial and transverse vibrations of a pipeline are reduced from a set of pipe-dynamic equations derived in the previous study and then the spectral element model is formulated. The accuracy of the spectral element method (SEM) is then verified by comparing its results with the results obtained by finite element method (FEM). It is shown that the present spectral element model provides very accurate solutions by using an extremely small number of degrees-of-freedom when compared with FEM. The dynamics of a sample pipeline is investigated with varying the axial tension and the speed of internal flow.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

심부지열 용 동축 열교환기 성능예측을 위한 열전달 실험 및 해석 (Heat Transfer Experiment and Analysis to Predict the Efficiency of Heat Exchanger for Deep Geothermal System)

  • 정국진;정윤성;박준수;이동현
    • 융복합기술연구소 논문집
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2017
  • The Heat exchanger for deep geothermal system is very important to enhance the efficiency of the system. The co-axial heat exchanger is used due to the limitation of digging space. The heat transfer on the external surface of outer pipe should be high to receive a large amount of heat from the ground. However, the inner pipe should be insulated to reduce the heat loss and increase the temperature of discharge water. This study made experiment apparatus to describe the co-axial heat exchanger and measure the heat transfer coefficients on the internal and external surface. And the pin-fin was designed and fixed on the internal surface to increase the efficiency of heat exchanger. Finally, we calculated the temperature of discharge water using the heat transfer circuit of co-axial heat exchanger and heat transfer coefficient which from experimental results. The water temperature was reached the ground temperature at -500 m and following the ground temperature. When the water return to the ground surface, the water temperature was decreased due to heat loss. As the pin-fin case, the heat transfer coefficient on the internal surface was decreased by 30% and it mean that the pin-fin help to insulate the inner pipe. However, the discharge water temperature did not change although pin-fin fixed on the inner pipe.

해저석유 생산용 라이저 모형에 대한 Vortex-Induced Vibration 수치계산 (NUMERICAL STUDY OF VORTES-INDUCED VIBRATION FLEXIBLE RISER AND PIPE MODELS)

  • 진정수;김우전;유재훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.295-304
    • /
    • 2010
  • The paper summarizes the VIV-related research with the focus on flexible riser and pipe models subject to various engineering conditions. First of all, a series of numerical simulations for the purpose of validating the efficiency of FSI solution approach (ANSYS MFX) has been performed. The comparison between the simulation and the experimental data shows that the present FSI solution method is capable of giving acceptable estimation to VIV problems. As a meaningful application to engineering problems, some tentative simulation cases which are difficult to carry out in experiment, such as a flexible pipe with internal flow and multi-assembled pipes, have been successfully carried out. The coupling mechanism between vortex shedding and the VIV has been well interpreted.

  • PDF