• 제목/요약/키워드: Internal Model Principle

검색결과 77건 처리시간 0.028초

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength

  • Deng, Dong-ping;Lu, Kuan;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.179-191
    • /
    • 2019
  • Based on the effective stress principle, a new formula for shear strength of unsaturated soil is derived under the general nonlinear Mohr-Coulomb (M-C) strength criterion to improve the classical strength criterion of unsaturated soil. Meanwhile, the simple irrigation model under steady seepage is adopted to obtain the distribution of the matrix suction or the degree of saturation (DOS) above the groundwater table in the slope. Then, combined with the improved strength criterion of unsaturated soil and the simple irrigation model under steady seepage, the limit equilibrium (LE) solutions for the unsaturated slope stability are established according to the global LE conditions of the entire sliding body with assumption of the stresses on the slip surface. Compared to the classical strength criterion of unsaturated soil, not only the cohesion soil but also the internal friction angle is affected by the matric suction or the DOS in the improved strength criterion. Moreover, the internal friction angle related to the matric suction has the nonlinear characteristics, particularly for a small of the matric suction. Thereafter, the feasibility of the present method is verified by comparison and analysis on some slope examples. Furthermore, stability charts are also drawn to quickly analyze the unsaturated slope stability.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

다중 모델, 제어기, 스위칭을 이용한 비선형 플랜트의 IMC 제어기 설계 (IMC design for nonlinear plants using multiple models, controllers, and switching)

  • 오원근;서병설
    • 전자공학회논문지B
    • /
    • 제33B권11호
    • /
    • pp.22-30
    • /
    • 1996
  • In this paper, the properties and the design procedures of the internal model control (IMC) structures are discussed and a new nonlinear IMC(NIMC) strategy is proposed. The IMC controllers are simply inverse controller in principle but the development of a NIMC poses difficulties due to the inherent complexity of nonlinear systems. Existing design mehtods are a few and not easy to implement. The proposed approach is using multiple linear models, linear IMC controllers, and swiching scheme instead of using nonlinear model/controller. The advantages of the new approach are that we can use linear IMC mehtod which are now well estabilished and need not global nonlinear models.

  • PDF

비구조적인 불확실성을 가지는 시스템에 대한 반복 제어기의 설계 (Design of a repetitive controller for the system with unstructured uncertainty)

  • 도태용;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.779-782
    • /
    • 1996
  • Repetitive control is a proposed control strategy in view of the internal model principle and achieves a high accuracy asymptotic tracking property by implementing a model that generates the periodic signals of period into the closed-loop system. Since the repetitive control system contains a periodic signal generator with positive feedback loop, which reduces the stability margin, in the overall closed-loop system, the stability of the closed-loop system should be considered as an important problem. In case that a real system has plant uncertainties which are not represented through modeling, the robust stability problem of the repetitive control system has not been considered sufficiently. In this paper, we propose the robust stability condition for the system with modeling uncertainty. The proposed robust stability condition will be obtained using the robust performance condition in the H$_{\infty}$ control. Moreover, by use of the proposed robust stability condition, we propose a procedure that designs a repetitive controller and a feedback controller simultaneously which can stabilize the overall closed-loop system robustly and which can also do the closedloop system without repetitive controller..

  • PDF

선형연속데이터형 제어계통의 플랜트와 디지털모델의 오차자승적분지표에 의한 최적디지탈제어기의 전달함수유도 (Deriviation of the z-transfer Function of Optimal Digital Controller Using an Integral-Square-Error Criterion with the continuous-data Model in Linear Control Systems)

  • Park, Kyung-Sam
    • 대한전기학회논문지
    • /
    • 제32권6호
    • /
    • pp.211-218
    • /
    • 1983
  • In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.

  • PDF

Control of Helicopter Training Simulator by Self Tuning Control Method

  • Kim, Sang-Bong;Ahn, Hwi-Ung;Lee, Gun-You;Park, Soon-Sil;Oh, Sea-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.77.6-77
    • /
    • 2001
  • R/C helicopter has been used to several fields of military affairs, investigation, searching and toys because it has small size, hovering and vertical take-off characteristics etc. Therefore it needs more realizable control method. The paper introduces simulation and experimental results for control of a helicopter training simulator by self tuning control method. It is assumed that the helicopter is operated at the state of hovering motion and the model is induced. The self tuning control method incorporates the concepts of the well known internal model principle and annihilator polynomial for reference input and disturbance. The controller design is separated into two cases that the plant parameters are known or not. To realize ...

  • PDF

Interaction between two neighboring tunnel using PFC2D

  • Sarfarazi, V.;Haeri, Hadi;Safavi, Salman;Marji, Mohammad Fatehi;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.77-87
    • /
    • 2019
  • In this paper, the interaction between two neighboring tunnel has been investigated using PFC2D. For this purpose, firstly calibration of PFC was performed using Brazilian experimental test. Secondly, various configuration of two neighboring tunnel was prepared and tested by biaxial test. The maximum and minimum principle stresses were 0.2 and 30 MPa respectively. The modeling results show that in most cases, the tensile cracks are dominant mode of cracks that occurred in the model. With increasing the diameter of internal circle, number of cracks decreases in rock pillar also number of total cracks decreases in the model. The rock pillar was heavily broken when its width was too small. In fixed quarter size of tunnel, the crack initiation stress decreases with increasing the central tunnel diameter. In fixed central tunnel size, the crack initiation stress decreases with increasing the quarter size of tunnel.

Rich Phase Separation Behavior of Biomolecules

  • Shin, Yongdae
    • Molecules and Cells
    • /
    • 제45권1호
    • /
    • pp.6-15
    • /
    • 2022
  • Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.