• Title/Summary/Keyword: Internal Flow State

Search Result 161, Processing Time 0.023 seconds

Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method (컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1590-1595
    • /
    • 2003
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

  • PDF

Blast Furnace Modeling for Predicting Cohesive Zone Shape (융착대 예측을 위한 고로공정 모델링)

  • Yang, Kwang-Heok;Choi, Sang-Min;Jung, Jin-Kyung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.39-45
    • /
    • 2006
  • Analysis of the internal state of the blast furnace is needed to predict and control the operating condition. Especially, it is important to develop modeling of blast furnace for predicting cohesive zone because shape of cohesive zone influences overall operating condition of blast furnace such as gas flow, chemical reactions and temperature. because many previous blast furnace models assumed cohesive zone to be fixed, they can't evaluate change of cohesive zone shape by operation condition such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace process. In this model, cohesive zone is changed by solid temperature range, FVM is used for numerical simulation. To find location of cohesive zone whole calculation procedure is iterated Until cohesive zone is converged. Through this approach, shape of cohesive zone, velocity, composition and temperature within the furnace are predicted by model.

  • PDF

Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method (컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1719-1726
    • /
    • 2004
  • Direct drive servovalve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the DC motor. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, Seong-Rae;Choe, Hyeon-Yeong;Mun, Ui-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.754-763
    • /
    • 2002
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

Mixed Structure Effect of Fuel and Air on Rotary Kiln Burner Flame (연료 및 공기의 혼합구조가 로타리 킬른 용 버너 화염에 미치는 영향)

  • Kim, Youngho;Lee, Cheolwoo;Kim, Insu;Lim, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.339-342
    • /
    • 2014
  • Rotary kiln produces lime from limestone through thermal decomposition. Ring formation in kiln internal wall is known issue that decreases productivity. The cause of ring formation is temperature imbalance as flame leans toward upper wall. Therefore, burner nozzle geometry was changed to improve air-fuel mixing state which leads to prevention of ring formation. CFD simulation and experimental test were performed in this study to investigate the effect of air-fuel mixing on flame structure, temperature and $NO_X$ concentration. It is shown that combustion efficiency has been enhanced and $NO_X$ concentration has been decreased by using swirl flow for secondary combustion air. It's also shown that flame has been straightened by using straight flow for secondary combustion air.

  • PDF

An Experimental Study on the Quenching Phenomena of Hemispherical Downward Facing Convex Surfaces with Narrow Gaps (반구형 소형 간극 내에서의 냉각과정에 관한 실험적 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Kim, Sang-Baik;Cho, Young-Ro;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.447-452
    • /
    • 2001
  • Quenching phenomena of hemispherical downward facing convex surfaces with narrow gaps have been investigated experimentally. Experiments employed test sections having 1 and 2 mm in gap thickness and 1 atm in system pressure. From interpretations of the temperature and the heat flux history, it was found that the flooding inside the gap was restricted by CCFL phenomena and quenching process was propagated from lower to upper region of the internal copper shell. The ratio of the maximum heat fluxes at 1 mm to 2mm in gap thickness was the almost same that obtained by steady state experiments. The quenching scenario of the hemispherical downward facing surface with narrow gap has been suggested.

  • PDF

Impeller Redesign of Multi-stage Centrifugal Pumps (다단 원심펌프 임펠러의 개량 수력설계)

  • Oh, JongSik;Kim, DongSoo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.177-184
    • /
    • 2001
  • For two kinds of the multi-stage centrifugal pump with diffuser vanes and return channel vanes the meanline performance prediction is applied to get information of hydraulic performance at each internal flow station, because only flange-to-flange test curves are available. As a first step of redesign fur higher efficiency, the impeller geometry is numerically investigated in the present study. Quasi-3D inviscid loading distributions are obtained, for the two impellers, using the state-of-the-art method of impeller 3D design, which provides a guide to optimal redesign. Full 3D turbulent flow fields are thereafter analyzed, using the specialized CFD code, to confirm the redesign results. The inherent limitation of the traditional graphic method of impeller design, which most of domestic pump manufacturers are now employing, is found.

  • PDF

Resonance Frequency of the Natural Convection in the Closure Cavity for the Variable Aspect Ratio (종횡비가 변하는 공동 내 자연대류의 공진주파수)

  • Chun, Kun-Ho;Joo, Kwang-Sup;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.609-614
    • /
    • 2000
  • This numerical study investigate resonance frequency of natural convection for steady state, periodic flow and chaotic flow in two-dimensional direct numerical simulations, differentially heated, vertical cavities having aspect ratios near unity. The enclosure cavity has isothermal and time dependent temperature side walls and adiabatic top/bottom walls. The aspect ratio is 1/3, 1/2, 1, 2, and 3 for the varying Rayleigh number. Resonance frequency for AR=1 has decrease as the aspect ratio and the Rayleigh number are increasing.

  • PDF

A Numerical Study on the Performance Evaluation of the Vacuum Pump for Waste Treatment (수치해석을 이용한 오물 처리용 진공펌프의 성능평가)

  • Lee, Him-Chan;Kim, Joon-Hyung;Yoon, Joon-Yong;Kim, Chang-Jo;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.53-58
    • /
    • 2014
  • Vacuum pump transfers waste that is pulverized by integrated macerator. For this reason, unlike ordinary pump systems, there is a rotating macerator ahead of impeller for pulverizing. It is hard to predict numerical solution because area of Inlet flow path changes according to the rotation angle of the integrated macerator. So, in this study, the verification of performance evaluation method of Marine vacuum pump were numerically studied by commercial ANSYS CFX 13.0 software. We select a model of performance evaluation for study, and we analyze change of inlet flow path of integrated macerator according to rotation angle. We generate 5 model sets according to rotation angle of the integrated macerator. And we evaluate their performance by numerical analysis. Then, we analyze internal flow field and performance according to rotation angle of the integrated macerator based on numerical analysis result. In addition, we compared with experimental data for validity of numerical result by using steady state analysis.