• Title/Summary/Keyword: Internal Element

Search Result 1,361, Processing Time 0.023 seconds

Internal DVB-H Antenna with Wing Element (Wing Element를 이용한 DVB-H 내장형 안테나)

  • Jung, Byung-Woon;Lee, Hyun-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.56-61
    • /
    • 2008
  • Recently, although demands for an internal antenna applicable to DVB-H handhold terminals are increased, there are many difficulties in designing the antenna due to the long wavelength of $430{\sim}640mm$ and the wide bandwidth of $470MHz{\sim}702MHz$. Since the proposed DVB-H band antenna can be analyzed as an SDA (Supported structure Defined Antenna), it is designed by combination of the folded monopole radiator which has a wideband characteristics and the wing-type element which can reduce the resonant frequency effectively. The DVB-H band antenna has VSWR of 4 and obtains a good gain from -5 to 2 dBi, when it is built-in the mobile handset.

  • PDF

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

Geometric Nonlinear F.E. Analysis of Plane Frames Including Effects of the Internal Hinge (내부(內部)힌지효과(效果)를 고려(考慮)한 평면(平面) 뼈대구조(構造)의 기하학적(幾何學的)인 비선형(非線型) 유한요소해석(有限要素解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.93-103
    • /
    • 1994
  • Two beam/column elements are developed in order to analyze the geometric nonlinear plane irames including the effects of internal hinge and transverse shear deformation. In the case of the first element (finite segment method), tangent stiffness matrix is derived by directly integrating the equilibrium equations whereas in the case of the second element (finite element method) elastic and goemetric stiffness matrices are calculated by using the hermitian polynomials including the effects of internal hinge and shear deformation as the shape function. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

Elastic-Plastic Stress Analysis and Fatigue Lifetime Prediction of Cross-Bores in Autofrettaged Pressure Vessels

  • Koh, Seung-Kee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.935-946
    • /
    • 2000
  • Elastic-plastic stress analysis has been performed to evaluate the fatigue life of an autofrettaged pressure vessel containing cross-bores subjected to pulsating internal pressure of 200 MPa. Finite element analyses were used to calculate the residual and operating stress distributions of the pressure vessel due to the autofrettage process and pulsating internal pressure, respectively. Theoretical stress concentration factors of 3.06, 2.58, and 2.64 were obtained at the cross-bore of the pressure vessel due to internal pressure, 50%, and 100% autofrettage loadings, respectively. Local stresses and local strains determined from the elastic-plastic finite element analysis were employed to calculate the failure location and fatigue life of the pressure vessel with radial cross-bores, incorporating the low-cycle fatigue properties of the pressure vessel steel and fatigue damage parameters. Increase in the amount of overstrain by autofrettage process moved the crack initiation location from the inner radius toward a mid-wall, and extended the crack initiation life. Predicted fatigue life of the fully autofrettaged pressure vessel with cross-bores increased about 50%, compared to the unautofrettaged pressure vessel. At the autofrettage level higher than 50%, the failure location and fatigue life of the pressure vessel were not significantly influenced by the autofrettage level.

  • PDF

Plantar Soft-tissue Stress states in standing: a Three-Dimensional Finite Element Foot Modeling Study

  • Chen, Wen-Ming;Lee, Peter Vee-Sin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2009
  • It bas been hypothesized that foot ulceration might be internally initiated. Current instruments which merely allow superficial estimate of plantar loading acting on the foot, severely limit the scope of many biomechanical/clinical studies on this issue. Recent studies have suggested that peak plantar pressure may be only 65% specific for the development of ulceration. These limitations are at least partially due to surface pressures not being representative of the complex mechanical stress developed inside the subcutaneous plantar soft-tissue, which are potentially more relevant for tissue breakdown. This study established a three-dimensional and nonlinear finite element model of a human foot complex with comprehensive skeletal and soft-tissue components capable of predicting both the external and internal stresses and deformations of the foot. The model was validated by experimental data of subject-specific plantar foot pressure measures. The stress analysis indicated the internal stresses doses were site-dependent and the observation found a change between 1.5 to 4.5 times the external stresses on the foot plantar surface. The results yielded insights into the internal loading conditions of the plantar soft-tissue, which is important in enhancing our knowledge on the causes of foot ulceration and related stress-induced tissue breakdown in diabetic foot.

Failure analysis of prestressed concrete containment vessels under internal pressure considering thermomechanical coupling

  • Yu-Xiao Wu;Zi-Jian Fei;De-Cheng Feng;Meng-Yan Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4504-4517
    • /
    • 2023
  • After a loss of coolant accident (LOCA) in the prestressed concrete containment vessels (PCCVs) of nuclear power plants, the coupling of temperature and pressure can significantly affect the mechanical properties of the PCCVs. However, there is no consensus on how this coupling affects the failure mechanism of PCCVs. In this paper, a simplified finite element modeling method is proposed to study the effect of temperature and pressure coupling on PCCVs. The experiment results of a 1:4 scale PCCV model tested at Sandia National Laboratory (SNL) are compared with the results obtained from the proposed modeling approach. Seven working conditions are set up by varying the internal and external temperatures to investigate the failure mechanism of the PCCV model under the coupling effect of temperature and pressure. The results of this paper demonstrate that the finite element model established by the simplified finite element method proposed in this paper is highly consistent with the experimental results. Furthermore, the stress-displacement curve of the PCCV during loading can be divided into four stages, each of which corresponds to the damage to the concrete, steel liner, steel rebar, and prestressing tendon. Finally, the failure mechanism of the PCCV is significantly affected by temperature.

Safety Examination of the Junghyesaji Thirteen-Storied Stone Pagoda Including Internal Spaces through the Finite Element Analysis (유한요소해석을 통한 내부 공간을 갖는 정혜사지 십삼층석탑의 안전진단)

  • Chung, Jae-Ung;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • The stone pagodas include small internal spaces such as holes of Buddha's bones generally and the space's positions and sizes can make an influence on the maintenance of the stone pagoda. Also, inclined angles of the stone pagodas are an important factor to be considered to preserve them. In this paper, the Junghyesaji thirteen-storied stone pagoda subjected to its weight was analyzed through the finite element method to investigate the weakest location of the pagoda and study how size variation of internal spaces and slope variation influenced the weakest location. And criterions were proposed to examine the safety of the stone pagoda along the size variation of the internal spaces and the slope variation in view of the deflections and the stresses to examine fractures of the pagoda.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT (임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석)

  • Ahn, Jong-Kwan;Kay, Kee-Sung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.

A Study on Scattered Field of Ultrasonic Wave Using the Boundary Element Method (경계요소법을 이용한 초음파 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.130-137
    • /
    • 2000
  • Ultrasonic technique which is one of the most common and reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal scattered from internal defects. Therefore, the numerical analysis of the ultrasonic scattered field is absolutely necessary for the accurate and quantitative estimation of internal defects. Various modeling techniques now play an important role in nondestructive evaluation and have been employed to solve elastic wave scattering problems. Because the elastodynamic boundary element method is useful to analyze the scattered field in infinite media. it has been used to calculate the ultrasonic wavefields scattered from internal defects. In this study, a review of the boundary element method used for elastic wave scattering problems is presented and, as examples of the boundary element method, the scattered fields due to a circular cavity subjected to incident SH-wave and due to a surface-breaking crack subjected to incident Rayleigh wave are illustrated.

  • PDF

Development of a new injection mold structure for internal gears (새로운 내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Youn Suk;Je, Deok Keun;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2014
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF