• Title/Summary/Keyword: Internal Element

Search Result 1,364, Processing Time 0.031 seconds

A Study on the Deformation Behaviour of Bellows Subjected to Internal Pressure (내압을 받는 벨로즈의 변형 거동에 관한 연구)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.702-710
    • /
    • 1999
  • U-shaped bellows are usually used to piping system pressure sensor and controller for refriger-ator. Bellows subjected to internal pressure are designed for the purpose of absorbing deformation. Internal pressure on the convolution sidewall and end collar will be applied to an axial load tend-ing to push the collar away from the convolutions. To find out deformation behavior of bellow sub-jected to internal pressure the axisymmetric shell theory using the finite element method is adopted in this paper. U-shaped bellows can be idealized by series of conical frustum-shaped ele-ments because it is axisymmetric shell structure. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displace-ments are added to r-z cylindrical coordinates of nodal points. The new stiffness matrix of the sys-tem using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacement that is the step by step method is used in this paper. The force required to deflect bellows axially is a function of the dimensions of the bellows and the materials from which they are made. Spring constant is analyzed according to the changing geometric factors of U-shaped bellows. The FEM results were agreed with experiment. Using developed FORTRAN PROGRAM the internal pressure vs. deflection characteristics of a particu-lar bellows can be predicted by input of a few factors.

  • PDF

Study on Filter Efficiency and Lifetime Enhancement by using Internal Structures (내부구조물을 이용한 필터의 효율 및 수명 상승에 대한 연구)

  • Kim, Ji-Hun;Yoon, Sangwoo;Kwon, Sung-Ho;Sung, Su-Hwan;Bae, Mun-Oh;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.149-154
    • /
    • 2018
  • To improve the efficiency and lifetime of filters, we analyze the element distribution at the entrance and exit by using the flow inside a filter, confirming that the internal structure affects the filter efficiency. The flow in the pipe is predicted through computer simulations, and the filtration efficiency of each element is compared through experiments. The efficiency and lifetime of the filter are indirectly improved through the element distribution at the filter outlet according to the internal structure. Because pressure loss from the structure inevitably occurs, the efficiency and lifetime of filters against pressure loss must be considered.

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Effects of the Team Trust Element of Rugby Players on Self-Determination Motive and Team Performance

  • Lee, Jin-Wook;Park, Sung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.107-114
    • /
    • 2018
  • This study was conducted for the purpose of examining the effects of team trust element of rugby players on self-determination motive and team performance. As for the study subjects, rugby players participated in the 97th national athletic meet in 2016 were selected. As for data collection, in the total of 221 copies of samples were collected through convenience sampling method and 182 copies were used for the final analysis. Using SPSS 18.0, the collected data were analyzed through frequency analysis, exploratory factor analysis, Cronbach's ${\alpha}$ test, correlation analysis and multiple regression analysis and the following conclusions have been obtained. First, as for the effects of rugby players' team trust element on self-determination motive, it was found that team trust influenced external moderation, internal moderation, integrated moderation and identification moderation, and teammate trust influenced internal moderation, integrated moderation and identification moderation. Second, as for the effects of rugby players' team trust element on team performance, it was found that team trust and teammate trust influenced team performance. Third, as for the effects of rugby players' self-determination motive on team performance, it was found that integrated moderation and internal moderation influenced team performance.

A hybrid 8-node hexahedral element for static and free vibration analysis

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.571-590
    • /
    • 2005
  • An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed for static and free vibration analyses. The element formulation is based directly on an 8-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational principle. Numerical examples are presented to show the validity and efficiency of the present element for static and free vibration analysis.

Modeling of internal wave generation near a shelf slope by ocean finite element method

  • Lee, Kwi-Joo;Joa, Soon-Won;Eom, Ki-Chang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.1
    • /
    • pp.38-43
    • /
    • 2006
  • The 3-D modeling of ocean finite element method(OFEM) using $k-{\varepsilon}$ turbulent model and tetrahedron grids has been used to investigate the internal wave generation during the expansion of the deep water from the open sea to the shelf with a simple shape, which can be widely used in the fields of submarine development, ocean environment and meteorology, etc. In this paper, the detailed configuration of internal wave with its length and height and also the distribution of salinity and turbulent kinematic energy, etc. were derived. It is hoped that this OFEM method can be successfully applied to the numerical calculation of internal wave for and the oceanographic problems (tidal flows around underwater hill, plateau, Georges Bank, etc.) and ocean engineering problems(flow past artificial sea reefs) in future.

PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS

  • Cao, Wei-Ming;Guo, Benqi
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.345-368
    • /
    • 2004
  • A preconditioning algorithm is developed in this paper for the iterative solution of the linear system of equations resulting from the p-version boundary element approximation of the three dimensional integral equation with hypersingular operators. The preconditioner is derived by first making the nodal and side basis functions locally orthogonal to the element internal bases, and then by decoupling the nodal and side bases from the internal bases. Its implementation consists of solving a global problem on the wire-basket and a series of local problems defined on a single element. Moreover, the condition number of the preconditioned system is shown to be of order $O((1+ln/p)^{7})$. This technique can be applied to discretization with triangular elements and with general basis functions.

Variational Formulation of Hybrid-Trefftz Plate Elements and Evaluation of Their Static Performance (하이브리드 트레프츠 평판 요소의 변분 수식화와 성능 평가)

  • Choo, Yeon-Seok;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.302-309
    • /
    • 2003
  • Hybrid-Trefftz plate bending elements are known to be robust and free of shear locking in the thin limit because of Internal displacements fields and linked boundary displacements. Also, their finite element approximation is very simple regardless to boundary shape since all element matrices can be calculated using only boundary integrals. In this study, new hybrid-Trefftz variational formulation based on the total potential energy principle of internal displacements and displacement consistency conditions at the boundary is derived. And flat shell elements are derived by combining hybrid-Trefftz bending stiffness and plane stress stiffness with drilling dofs.

The Topology Optimization of Three-dimensional Cooling Fins by the Internal Element Connectivity Parameterization Method (내부 요소 연결 매개법을 활용한 3 차원 냉각핀의 위상 최적설계)

  • Yoo, Sung-Min;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.360-365
    • /
    • 2007
  • This work is concerned with the topology optimization of three-dimensional cooling fins or heat sinks. Motivated by earlier success of the Internal Element Connectivity Method (I-ECP) method in two-dimensional problems, the extension of I-ECP to three-dimensional problems is carried out. The main efforts were made to maintain the numerical trouble-free characteristics of I-ECP for full three-dimensional problems; a serious numerical problem appearing in thermal topology optimization is erroneous temperature undershooting. The effectiveness of the present implementation was checked through the design optimization of three-dimensional fins.

  • PDF

Failure Criterion of Straight Pipe with Outer Local Wall Thinning under Internal Pressure (내압을 받는 외부 국부 감육 직관의 파손 기준)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 2014
  • This study was carried out an experimental and finite element analysis on the fracture behavior of straight pipes with local wall thinning under internal pressure. Local wall thinning was machined on the pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area has an eroded ratio of d/t=0.80~0.92 and an eroded length of l=25, 50 and 102 mm. Three-dimensional elastic-plastic analyses were also carried out using the finite element method, which is able to accurately simulate failure behaviors. In regards to the relation ship between pressure and eroded ratio, the criterion that can be used safely under operating pressure and design pressure were obtained from this calculation. The results of this calculation were in relatively good agreement with that of the experiment.