References
- Numer. Math. v.85 An additive Schwarz Preconditioner for p-version boundary element approximation of the hypersingular operator in three dimensions M.Ainsworth;B.Guo https://doi.org/10.1007/s002110000134
-
SIAM J. Numer. Anal.
v.28
Efficient pre-conditioning for the p version of the finite element in
$R^2$ I.Babuska;A.W.Craig;J.Mandel;J.Pitkaranta https://doi.org/10.1137/0728034 - SIAM J. Numer. Anal. v.18 The p-version of the finite element method I.Babuska;B.A.Szabo;I.N.Katz https://doi.org/10.1137/0718033
- Interpolation Spaces: an Introductions J.Bergh;J.Lofstrom
- PhD Thesis, Courant Institute of Mathematical Science Iterative substructuring algorithms for the p-version finite element method for elliptic problems I.Bica
- SIAM J. Numer. Anal. v.23 Iterative methods for the solution of elliptic problems on regions partitioned into substructures P.E.Bjorstad;O.B.Widlund https://doi.org/10.1137/0723075
- Math. Comp. v.47 The construction of preconditioners for elliptic problems by substructuring I J.H.Bramble;J.E.Pasciak;A.H.Schatz https://doi.org/10.2307/2008084
- SIAM J. Math. Anal. v.19 Boundary integral operators on Lipschitz domains: elementary results M.Costabel https://doi.org/10.1137/0519043
- In First International Symposium on Domain Decomposition Methods for Partial Differential Equations A method of domain decomposition for 3-D finite element problems M. Dryja;R.Glowinski(ed.);G.H.Golub(ed.);G.A.Meurant(ed.);J.Periaux(ed.)
- Contemp. Math. v.157 Some recent results on Schwarz type domain decomposition algorithms M.Dryja;O.B.Widlund
-
Numer. Math.
v.79
An iterative substructuring method for the p-version of the boundary element method for hypersingular integral equations in
$R^3$ N.Heuer https://doi.org/10.1007/s002110050344 -
SIAM J. Sci. Comput.
v.20
Iterative substructuring method for hypersingular integral equations in
$R^3$ N.Heuer;E.P.Stephan https://doi.org/10.1137/S1064827596311797 - Math. Comput. v.67 Multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method N.Heuer;E.P.Stephan;T.Tran https://doi.org/10.1090/S0025-5718-98-00926-0
- Non-homogeneous boundary value problems and applications v.II J.L.Lions;E.Magenes
- Proceeding of the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations A variant for nonoverlapping subdomains P.L.Lions
- C. R. Acad. Sci. Paris, Serie I v.309 Relevement de trances polynomiales et interpolations hilbertiennes entre espaces de polynomes Y.Maday
- SIAM J. Numer. Anal. v.33 A polylogarithnic bound for an iterative substructuring method for spectral elements in three dimensions L.Pavarino;O.B.Widlund https://doi.org/10.1137/S0036142994265176
- Finite Element Analysis B.Szabo;I.Babuska
- In Recent advances in numerical methods and applications, (Sofia, 1998) v.II Domain decomposition and boundary elements O.Steinbach;W.L.Wendland
- Appl. Anal. v.60 Additive Schwarz method for the h-version boundary element method T.Tran;E.P.Stephan https://doi.org/10.1080/00036819608840418
Cited by
- An iterative substructuring method for thehp-version of the BEM on quasi-uniform triangular meshes vol.23, pp.4, 2007, https://doi.org/10.1002/num.20259
- An extension theorem for polynomials on triangles vol.45, pp.2, 2008, https://doi.org/10.1007/s10092-008-0144-5
- ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES vol.28, pp.2, 2013, https://doi.org/10.4134/CKMS.2013.28.2.407
- Optimal error estimate of a projection based interpolation for the p-version approximation in three dimensions vol.50, pp.3-4, 2005, https://doi.org/10.1016/j.camwa.2005.04.005
- Anisotropic Error Estimates of the Linear Virtual Element Method on Polygonal Meshes vol.56, pp.5, 2018, https://doi.org/10.1137/17M1154369
- Preconditioning the Mass Matrix for High Order Finite Element Approximation on Triangles vol.57, pp.1, 2019, https://doi.org/10.1137/18M1182450