DOI QR코드

DOI QR Code

PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS

  • Cao, Wei-Ming (Department of Applied Mathematics The University of Texas at San Antonio) ;
  • Guo, Benqi (Department of Mathematics University of Manitoba Winnipeg)
  • Published : 2004.03.01

Abstract

A preconditioning algorithm is developed in this paper for the iterative solution of the linear system of equations resulting from the p-version boundary element approximation of the three dimensional integral equation with hypersingular operators. The preconditioner is derived by first making the nodal and side basis functions locally orthogonal to the element internal bases, and then by decoupling the nodal and side bases from the internal bases. Its implementation consists of solving a global problem on the wire-basket and a series of local problems defined on a single element. Moreover, the condition number of the preconditioned system is shown to be of order $O((1+ln/p)^{7})$. This technique can be applied to discretization with triangular elements and with general basis functions.

Keywords

References

  1. Numer. Math. v.85 An additive Schwarz Preconditioner for p-version boundary element approximation of the hypersingular operator in three dimensions M.Ainsworth;B.Guo https://doi.org/10.1007/s002110000134
  2. SIAM J. Numer. Anal. v.28 Efficient pre-conditioning for the p version of the finite element in $R^2$ I.Babuska;A.W.Craig;J.Mandel;J.Pitkaranta https://doi.org/10.1137/0728034
  3. SIAM J. Numer. Anal. v.18 The p-version of the finite element method I.Babuska;B.A.Szabo;I.N.Katz https://doi.org/10.1137/0718033
  4. Interpolation Spaces: an Introductions J.Bergh;J.Lofstrom
  5. PhD Thesis, Courant Institute of Mathematical Science Iterative substructuring algorithms for the p-version finite element method for elliptic problems I.Bica
  6. SIAM J. Numer. Anal. v.23 Iterative methods for the solution of elliptic problems on regions partitioned into substructures P.E.Bjorstad;O.B.Widlund https://doi.org/10.1137/0723075
  7. Math. Comp. v.47 The construction of preconditioners for elliptic problems by substructuring I J.H.Bramble;J.E.Pasciak;A.H.Schatz https://doi.org/10.2307/2008084
  8. SIAM J. Math. Anal. v.19 Boundary integral operators on Lipschitz domains: elementary results M.Costabel https://doi.org/10.1137/0519043
  9. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations A method of domain decomposition for 3-D finite element problems M. Dryja;R.Glowinski(ed.);G.H.Golub(ed.);G.A.Meurant(ed.);J.Periaux(ed.)
  10. Contemp. Math. v.157 Some recent results on Schwarz type domain decomposition algorithms M.Dryja;O.B.Widlund
  11. Numer. Math. v.79 An iterative substructuring method for the p-version of the boundary element method for hypersingular integral equations in $R^3$ N.Heuer https://doi.org/10.1007/s002110050344
  12. SIAM J. Sci. Comput. v.20 Iterative substructuring method for hypersingular integral equations in $R^3$ N.Heuer;E.P.Stephan https://doi.org/10.1137/S1064827596311797
  13. Math. Comput. v.67 Multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method N.Heuer;E.P.Stephan;T.Tran https://doi.org/10.1090/S0025-5718-98-00926-0
  14. Non-homogeneous boundary value problems and applications v.II J.L.Lions;E.Magenes
  15. Proceeding of the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations A variant for nonoverlapping subdomains P.L.Lions
  16. C. R. Acad. Sci. Paris, Serie I v.309 Relevement de trances polynomiales et interpolations hilbertiennes entre espaces de polynomes Y.Maday
  17. SIAM J. Numer. Anal. v.33 A polylogarithnic bound for an iterative substructuring method for spectral elements in three dimensions L.Pavarino;O.B.Widlund https://doi.org/10.1137/S0036142994265176
  18. Finite Element Analysis B.Szabo;I.Babuska
  19. In Recent advances in numerical methods and applications, (Sofia, 1998) v.II Domain decomposition and boundary elements O.Steinbach;W.L.Wendland
  20. Appl. Anal. v.60 Additive Schwarz method for the h-version boundary element method T.Tran;E.P.Stephan https://doi.org/10.1080/00036819608840418

Cited by

  1. An iterative substructuring method for thehp-version of the BEM on quasi-uniform triangular meshes vol.23, pp.4, 2007, https://doi.org/10.1002/num.20259
  2. An extension theorem for polynomials on triangles vol.45, pp.2, 2008, https://doi.org/10.1007/s10092-008-0144-5
  3. ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES vol.28, pp.2, 2013, https://doi.org/10.4134/CKMS.2013.28.2.407
  4. Optimal error estimate of a projection based interpolation for the p-version approximation in three dimensions vol.50, pp.3-4, 2005, https://doi.org/10.1016/j.camwa.2005.04.005
  5. Anisotropic Error Estimates of the Linear Virtual Element Method on Polygonal Meshes vol.56, pp.5, 2018, https://doi.org/10.1137/17M1154369
  6. Preconditioning the Mass Matrix for High Order Finite Element Approximation on Triangles vol.57, pp.1, 2019, https://doi.org/10.1137/18M1182450