• Title/Summary/Keyword: Internal Ballistic

Search Result 42, Processing Time 0.027 seconds

Internal Ballistic Analysis using Two Kinds of Propellant for Design of Dual-thrust Solid Rocket Motor (이중추력형 고체 추진기관 설계를 위한 이종추진제 적용 내탄도 해석)

  • Kim, Hanjun;Moon, Kyungje
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1176-1179
    • /
    • 2017
  • In this study, internal ballistic analysis theories of dual-thrust solid rocket motor using two kinds of propellant are found, and the theories are applied to develop internal ballistic analysis model. Internal ballistic analysis which is dual-thrust solid rocket motor using two kinds of propellant is carried out an applying of the random figures of two kinds of propellant and an analyze of the test results. Through this analytical model was able to an applying internal ballistic analysis for dual-thrust solid rocket motor using two kinds of propellant.

  • PDF

Study on Internal Ballistic Performance Analysis for Single-chamber Dual-thrust Rocket Motors (단일연소관 이중추력 로켓모터의 내탄도성능 분석법 연구)

  • Kwon, Hyeokmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, study on the internal ballistic analysis method for single-chamber dual-thrust rocket motors meeting a dual-thrust profile requirement by tailoring the grain burning area is presented. The analysis method, which can acquire variables required for the performance prediction, considering gradual change of burning rate correction factor and specific impulse in the transition phase, is proposed. Improvements compared to the analysis method in the previous study, which do not consider change in the transition phase, are verified through comparison between the newly proposed method and the method in the previous study. Internal ballistic variables are obtained for four different ground firing test conditions using the proposed method, and the performance prediction for each condition is conducted using these variables. These prediction results and the ground test data are in good agreement, so it is confirmed that the performance prediction of dual-thrust motors with same design geometries based on the proposed analysis method is available.

Analysis of Internal Ballistic Characteristics of Solid Rocket with Erosive Burning (침식연소에 따른 고체 로켓 내탄도 특성 변화 분석)

  • Cho, Mingyoung;Kim, Jinyong;Park, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.56-61
    • /
    • 2014
  • Two erosive burning models were applied to compare analysis results of ballistic for the internal ballistics of solid rocket motors. By comparing motor tests with results of analysis, the variance of a grain shape was analyzed and coefficients of erosive burning were drawn. Results of comparison presents that the coefficient of erosive burning was proportional to the change of burning area, while inversely proportional to the change of cross area.

Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓 추진기관 내탄도 해석기법 연구)

  • Cho, Min-Gyung;Kwon, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.213-216
    • /
    • 2010
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning for a solid rocket motor. The variance of local velocity and pressure along grain surface are analyzed by using the continuity and momentum equation. The model introduced in this study showed good agreements with the results of previous internal ballistics program. It was investigated that the change of combustion pressure, gas velocity and regrestion rate along the grain axis.

  • PDF

Unsteady Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내타도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.221-226
    • /
    • 2008
  • A typical unsteady internal ballistic analysis model was proposed to take account the erosive burning with the variance of local velocity and pressure along grain surface to the axis of a solid rocket combustor. The model introduced in this study showed good agreements with the results of previous research. It was investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect on the erosive burning.

  • PDF

Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내탄도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning with the variance of local velocity and pressure along the grain surface of a solid rocket combustor. To validate the model of concern in the study, both cases of non-erosive and erosive burning were compared with the previous researches with marginal accuracy. It was quantitatively investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect the erosive burning characteristics.

Numerical Simulation of Steel/Kevlar Hybrid Composite Helmet Subjected to Ballistic Impact (탄도 충격을 받는 Steel/Kevlar 혼합복합재 헬멧 수치 시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1569-1575
    • /
    • 2012
  • In this study, ballistic impact effects on a helmet were investigated using the AUTODYN-3D program. Two types of materials were used for manufacturing the helmet: single Kevlar and Steel/Kevlar hybrid composites. Furthermore, two types of bullets were used in the simulation: steel spherical and 7.62 mm full-jacketed. In the simulation, the shape deformation of the projectile and internal energy were calculated. From the results, impact velocities above 655 m/s and 845 m/s were required to perforate the Steel/Kevlar helmet with steel spherical and 7.62 mm full-jacketed bullets, respectively. The results show that there was a large difference between the ballistic resistance of the Kevlar and Steel/Kevlar helmets. For the simulation on an NIJ-STD-0106.01 Type II helmet, a 7.62 mm fulljacketed bullet with a striking velocity of 358 m/s was used. Simulation results show that the Steel/Kevlar helmet could resist a 7.62 mm full-jacketed bullet traveling at 358 m/s.

Analysis on the Ballistic and Blast Shock for a Space Frame Structure (내충격 개방형 구조물에 대한 피탄 및 폭압 충격 해석)

  • Joo, Jae-Hyun;Gimm, Hak-In;Koo, Man-Hoi;Park, Jee-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.933-940
    • /
    • 2010
  • A numerical analysis for the space frame structure under ballistic and blast loads was performed using LS-DYNA, a commercial code. The space frame structure was developed to be adapted to the ground vehicle in the future and it was designed to build with Al7039 frames and lightweight multi-layered panels for the purpose of weight reduction and shock mitigation. The analyses have done for side impacts by a cylindrical projectile and Comp. C-4 explosive representing major threats to the vehicle. The deformed shape of the panel section and stresses as well as accelerations of the frames calculated from LS-DYNA were compared to the test results to validate the analysis model. The internal energies for panels and frames from LS-DYNA were also compared to each other to discern their role in absorbing the ballistic and blast impact.

Intergrated Design Software Development for Solid Rocket Motors (고체 추진기관 설계를 위한 통합 프로그램 개발)

  • Lee, Jun-Ho;Rho, Tae-Ho;Choi, Sung-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • There exist a lot of factors and restrictions for the design of solid rocket motors like burning rate, of solid propellant, demanded thrust, chamber pressure, diameter, length, weight and acceleration. For the optimization of these factors and restrictions, integrated design software for internal/external ballistic analysis was developed and verified by the performance test of solid rocket motors.

  • PDF

The Optimal Design of Vents using Linear Analysis (선형해석을 이용한 방열그릴(GRILLE)최적설계)

  • Choi, Yong-Hwan;Joe, Yeo-Uk
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.326-332
    • /
    • 2000
  • It should be essentially considered as important points that design of case in electronic product which simultaneously satisfied with structural stability and molding form in respect to developmental period and economical aspect. Especially, a shape of air vents grille, which is made to emit heat happen to be in the internal of product, must satisfy durability and strength but We have no quantitative data because to be done by experience of designer. So, in this study, We will propose that structure of optimal and method of design in air vents grille, which to reduce a lot of loss of time and cost due to trial and error of design and to stabilize in the BALLISTIC Impact test as to estimate strength with external appearance of product, using linear analysis.

  • PDF