• Title/Summary/Keyword: Intermediate heat exchanger

Search Result 52, Processing Time 0.025 seconds

Preliminary Investigation on Joining Performance of Intermediate Heat Exchanger Candidate Materials of Very High Temperature Reactor(VHTR) by Vacuum Brazing (진공 브레이징을 이용한 고온가스냉각로 중간 열교환기 후보재료의 접합성능에 관한 예비시험)

  • Kim, Gyeong-Ho;Kim, Gwang-Ho;Lee, Min-Gu;Kim, Heung-Hoe;Kim, Seong-Uk;Kim, Suk-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.195-197
    • /
    • 2005
  • An intermediate heat exchanger(IHX) is a key component in a next-generation VHTR with process heat applications such as hydrogen production and also for an indirect gas turbine system. Therefore, high temperature brazing with nickel-based filler metal(MBF-15) was carried out to study the joining characteristic(microstucture, joining strength) of nickel-based superalloy(Haynes 230) by vacuum brazing. The experimental brazing was carried out at the brazing process, an applied pressure of about 0.74Mpa and the three kinds of brazing temperatures were 1100, 1150, and $1190^{\circ}C$ with holding time 5 minute. It's joining phenomena were analyzed by optical microscopy and scanning electron microscopy with EPMA. The results of microstructure in the centre-line region of a joint brazed with MBF-15 show a typical ternary eutectic of v-nickel, nickel boride and chromium boride.

  • PDF

JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C

  • Kunitomi, Kazuhiko;Yan, Xing;Nishihara, Tetsuo;Sakaba, Nariaki;Mouri, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.9-20
    • /
    • 2007
  • Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.

Heat balance analysis for process heat and hydrogen generation in VHTR (공정열 및 수소생산을 위한 초고온가스로 열평형 분석)

  • Park, Soyoung;Heo, Gyunyoung;Yoo, YeonJae;Lee, SangIL
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.85-92
    • /
    • 2016
  • Since the power density of the VHTR(Very High Temperature Reactor) is lower, there is less possibility of core melt. VHTR has no risk of explosion caused by hydrogen generation when the loss of coolant accident occurs, which is another advantage. Along with safety benefit, it can be used as a process heat supplier near demand facilities because coolant temperature is very high enough to be used for industrial purpose. In this paper, we designed the primary system using VHTR and the secondary system providing electricity and process heat. Based on that 350 MW thermal reactor proposed by NGNP(Next Generation Nuclear Part), we developed conceptual model that the IHX(Intermediate Heat Exchanger) loop transports 300 MW thermal energy to the secondary system. In addition, we analyzed thermodynamic behavior and performed the efficiency analysis and optimization study depending on major parameters.

Maximum Power Output Condition of the Binary Power Cycle Composed of Two Carnot Cycles (이중 동력 사이클의 최대 출력 조건)

  • 김창욱;김수연;정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.349-354
    • /
    • 1991
  • The power output behavior of the binary cycle composed of two Carnot cycles is analyzed with considering heat transfer processes, in which the finitely constant temperature differences between heat sources and working fluids exists. The power output has the maximum value as an extremum for cycle temperatures and capacities of heat exchangers. In the internally reversible cycle, the power output is independent of the cycle temperature in the intermediate heat exchanger. In this case when the total capacities of heat exchangers are given, three heat exchangers have the same capacities at the maximum power output condition. In addition, when the cycle is not extremum for cycle temperatures and capacities of heat exchangers. At the maximum power output condition, the capacity of heat exchanger at the cold side is slightly more than the hot side as the cycle effectiveness decreases.

Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation (실험 계획법 및 열역학 계산법을 이용한 초고온가스로용 니켈계 초합금 설계 방법론)

  • Kim, Sung-Woo;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.132-141
    • /
    • 2013
  • This work is concerning a methodology of Ni-base superalloy development for a very high temperature gas-cooled reactor(VHTR) using design of experiments(DOE) and thermodynamic calculations. Total 32 sets of the Ni-base superalloys with various chemical compositions were formulated based on a fractional factorial design of DOE, and the thermodynamic stability of topologically close-packed(TCP) phases of those alloys was calculated by using the THERMO-CALC software. From the statistical evaluation of the effect of the chemical composition on the formation of TCP phase up to a temperature of 950 oC, which should be suppressed for prolonged service life when it used as the structural components of VHTR, 16 sets were selected for further calculation of the mechanical properties. Considering the yield and ultimate tensile strengths of the selected alloys estimated by using the JMATPRO software, the optimized chemical composition of the alloys for VHTR application, especially intermediate heat exchanger, was proposed for a succeeding experimental study.

Macroscopic High-Temperature Structural Analysis Model for a Small-Scale PCHE Prototype (I) (소형 PCHE 에 대한 거시적 고온 구조 해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Sung-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1499-1506
    • /
    • 2011
  • The IHX (intermediate heat exchanger) is a key component of nuclear hydrogen systems for the production of massive amounts hydrogen. The IHX transfers the $950^{\circ}C$ heat generated by the VHTR (very high temperature reactor) to a hydrogen production plant. The Korea Atomic Energy Research Institute established a small-scale gas loop to test the performance of key VHTR components and manufactured a small-scale PCHE (printed circuit heat exchanger) prototype, which is being considered as a candidate for the IHX, for testing in the small-scale gas loop. In this study, as a part of the high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and structural analysis for the small-scale PCHE prototype under the small-scale gas loop test conditions. This analysis serves as a precedent study to scheduled PCHE performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE and then used to design the medium-scale PCHE prototype.

Development of a Compact Nuclear Hydrogen Coupled Components Test Loop (원자로수소생산을 위한 연결부품 실험용 소형 컴팩트 실험장치 개발)

  • Hong, S.D.;Kim, J.H.;Kim, C.S.;Kim, Y.W.;Lee, W.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2850-2855
    • /
    • 2008
  • Very High Temperature Reactor (VHTR) has been selected as a high energy heat source for a nuclear hydrogen generation. The VHTR heat is transferred to a thermo-chemical hydrogen production process through an intermediate loop. Both Process Heat Exchanger and sulfuric acid evaporator provide the coupled components between the VHTR intermediate loop and hydrogen production module. A small scaled Compact Nuclear Hydrogen Coupled Components test loop is developed to simulate the VHTR intermediate loop and hydrogen production module. Main objective of the loop is to screening the candidates of NHDD (Nuclear Hydrogen Development and Demonstration) coupled components. The operating condition of the gas loop is a temperature up to $950^{\circ}C$ and a pressure up to 6.0MPa. The thermal and fluid dynamic design of the loop is dependent on the structures that enclose the gas flow, especially primary side that has fast gas velocity. We designed and constructed a small scale sulfuric acid experimental system which can simulate a part of the hydrogen production module also.

  • PDF

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃ (950℃ 순수헬륨 분위기에서 크리프 파단된 Alloy 617의 미세구조적 고찰)

  • Lee, Gyeong-Geun;Jung, Su-Jin;Kim, Dae-Jong;Kim, Woo-Gon;Park, Ji-Yeon;Kim, Dong-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.596-603
    • /
    • 2011
  • The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.