• Title/Summary/Keyword: Intermediate Heat Exchanger(IHX)

Search Result 28, Processing Time 0.02 seconds

Design and neutronic analysis of the intermediate heat exchanger of a fast-spectrum molten salt reactor

  • Terbish, Jamiyansuren;van Rooijen, W.F.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2126-2132
    • /
    • 2021
  • Various research groups and private interprises are pursuing the design of a Molten Salt Reactor (MSR) as one of the Generation-IV concepts. In the current work a fast neutron MSR using chloride fuel is analyzed, specially analyzing the power production and neutron flux level in the Intermediate Heat Exchanger (IHX). The neutronic analysis in this work is based on a chloride-fuel MSR with 600 MW thermal power. The core power density was set to 100 MW m-3 with a core H/D [[EQUATION]] 1.0 amd four Intermediate Heat Exchanger (IHX). This leads to a power of 150 MW per IHX; this power is also comparable to the IHX proposed in the SAMOFAR framework. In this work, a preliminary design of a 150 MW helical-coil IHX for a chloride-fueled MSR is prepared and the fission rate, capture rate, and inelastic scatter rate are evaluated.

Evaluation of High Temperature Structural Integrity of Intermediate Heat Exchanger in a Steady State Condition for PGSFR (PGSFR중간열교환기의 정상상태 고온 구조 건전성 평가)

  • Lee, Seong-Hyeon;Koo, Gyeong-Hoi;Kim, Sung-Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2016
  • Four cylindrically shaped IHXs(Intermediate Heat Exchangers) are installed in the PHTS(Primary Heat Transfer System) of the PGSFR(Prototype Gen IV Sodium cooled Fast Reactor). As for the IHX, the temperature difference of structure is inevitable result caused by heat transfer between primary coolant sodium and IHTS(Intermediate Heat Transport System) sodium. It is necessary to evaluate the high temperature structural integrity of IHXs which operate at the elevated temperature condition over the creep temperature. In this paper, the high temperature structural integrity of IHX under assumed loading conditions has been reviewed according to ASME code.

Pre-conceptual Design of the Main Components for the NHDD Program (수소생산용 원자로에서 주요기기의 예비개념설계)

  • Song, Kee-Nam;Lee, S.B.;Kim, Y.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.296-299
    • /
    • 2007
  • KAERI is in the process of carrying out the Nuclear Hydrogen Development and Demonstration (NHDD) Program. The indirect cycle gas cooled reactors that produce heat at temperatures in the order of $950^{\circ}C$ are being considered in the NHDD program. For the indirect gas cooled reactors, the intermediate hear exchanger (IHX) and hot gas duct (HGD) are the main components. For the NHDD program we are in the process of establishing a conceptual design of the IHX and HGD. The pre-conceptual design activities in this study dealt with a preliminary design of the IHX and the HGD including strength and thermal expansion evaluation of the main components.

  • PDF

A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production (수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구)

  • Shin, Jae Sun;Cho, Sung Jin;Choi, Suk Hoon;Qasim, Faraz;Lee, Heung N.;Park, Jae Ho;Lee, Won Jae;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions.

Analysis of Transient Performance of KALIMER-600 Reactor Pool by Changing the Elevation of Intermediate Heat Exchanger (중간 열교환기 높이 상승에 의한 KALIMER-600 원자로 풀 과도 성능 변화 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.991-998
    • /
    • 2010
  • The effect of increasing the elevation of an IHX (intermediate heat exchanger) on the transient performance of the KALIMER-600 reactor pool during the early phase of a loss of normal heat sink accident was investigated. Three reactors equipped with IHXs that were elevated to different heights were designed, and the thermal-hydraulic analyses were carried out for the steady and transient state by using the COMMIX-1AR/P code. In order to analyze the effects of the elevation of an IHX between reactors, various thermal-hydraulic properties such as mass flow rate, core peak temperature, RmfQ (ratio of mass flow over Q) and initiation time of decay heat removal via DHX (decay heat exchanger) were evaluated. It was found that with an increase in the IHX elevation, the circulation flow rate increases and a steep rise in the core peak temperature under the same coastdown flow condition is prevented without a delay in the initiation of the second stage of cooling. The available coastdown flow range in the reactor could be increased by increasing the elevation of the IHX.

Evaluation of High-Temperature Structural Integrity Using Lab-Scale PCHE Prototype (SUS316L 로 제작된 실험실 수준 인쇄기판형 열교환기 시제품의 고온구조건전성 평가)

  • Song, Kee Nam;Hong, Sung Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1189-1194
    • /
    • 2013
  • The Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR) is a core component that transfers the high heat of $950^{\circ}C$ generated in the VHTR to a hydrogen production plant. The Korea Atomic Energy Research Institute manufactured a lab-scale prototype of a Printed Circuit Heat Exchanger (PCHE) as a candidate for an IHX. In this study, as a part of a high-temperature structural integrity evaluation of the lab-scale PCHE prototype made of SUS316L, we carried out high temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the lab-scale PCHE prototype under helium experimental loop (HELP) test conditions as a precedent study prior to the performance test in HELP.

Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II) (소형 PCHE 시제품에 대한 거시적 고온 구조 해석 모델링 (II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1137-1143
    • /
    • 2011
  • The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at $950^{\circ}C$ to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

A Study on the Thermal-Hydraulic Characteristics of Molten Salt in Minichannels of an Intermediate Heat Exchanger for a Very High Temperature Reactor (VHTR) (초고온원자로 중간열교환기 미니챈널에서의 Molten Salt 열수력 특성 연구)

  • Jeong, Hui-Seong;Hwang, In-Seon;Bang, Kwang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1093-1099
    • /
    • 2010
  • For Very High Temperature Reactors (VHTR), the designs of the Intermediate Heat Transport Loop (IHTL) and the Intermediate Heat Exchanger (IHX) are particularly difficult because of the high-temperature operation (up to $950^{\circ}C$). In this study, Flinak molten salt, a eutectic mixture of LiF, NaF, and KF (46.5:11.5:42.0 mole %) is considered as the heat transporting fluid in the IHTL. To evaluate the flow and heat transfer performance of the Flinak molten salt in small channels with hydraulic diameters in the millimeter range, a double-pipe heat exchanger was constructed using small-diameter tubes for the heat exchange between the Flinak and the gas flow. The experimental data showed that, for laminar Flinak flow, the measured friction factors were close to the 64/Re curve and the Nusselt numbers were generally between 3.66 and 4.36.

Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment (원자력 극한환경용 세라믹 열교환기 소재로서 반응소결 SiC 세라믹스 제작성)

  • Jung, Choong-Hwan;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.