• Title/Summary/Keyword: Interlaminar Strength

Search Result 107, Processing Time 0.022 seconds

The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate (초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향)

  • Kwon, Oh-Heon;Kwon, Woo-Deok;Kang, Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

Stitching effect on the mechanical properties of composite beams (Stitch된 복합재 빔의 기계적 물성변화)

  • Lee Chang-Hun;Nam Won-Sang;Song Seung-Wook;Byun Joon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.216-219
    • /
    • 2004
  • The stitching process has been widely utilized for the improvement of through-thickness property of the conventional laminated composites. This paper rep0l1s the effects of stitching on the flexural and interlaminar shear properties of multiaxial warp knitted composites in order to examine the performance improvements. Considered parameters are as follows: the stacking regularity of the multiaxial warp knits, the stitch spacings, the stitching types, the stitching location, and the location of compression fixture nose. These parameters have little effect on the flexural and interlaminar shear properties, except for the case of stitching location. Stitching on the $0^{\circ}$ fibers showed the lowest flexural strength and modulus ($12\%$reduction for both properties). The stitch spacing of 5mm resulted 8% reduction in interlaminar strength compared with 10mm spacing.

  • PDF

Studies on ILSS and Acoustic Emission Properties of Carbon-Carbon Composites

  • Park, Soo-Jin
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.60-63
    • /
    • 2000
  • In this work, the carbon fibers-reinforced carbon matrix composites made with different carbon char yields of phenolic resin matrix have been characterized by mechanical flexural tests for acoustic emission properties. The composites had been fabricated in the form of two-dimensional polyacrylonitrile based carbon fibers during the carbonization process. It was found that the composites made with the carbon char yield-rich of resin matrix result in better mechanical interfacial properties, i.e., the interlaminar shear strength (ILSS) of the composites. The data obtained from the acoustic emission monitored appeared to show that the composites made with carbon char yield-rich were also more ductile. From the acoustic emission results, the primary composite failure was largely depended on the debonding at interfaces between fibers and matrix. The interlaminar shear strengths of the composites were correlated with the acoustic emission results.

  • PDF

Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review

  • Khan, Shafi Ullah;Kim, Jang-Kyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.115-133
    • /
    • 2011
  • Fiber reinforced polymer composites (FRPs) are being increasingly used for a wide range of engineering applications owing to their high specific strength and stiffness. However, their through-the-thickness performance lacks some of the most demanding physical and mechanical property requirements for structural applications, such as aerospace vehicles and military components. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs), due to their excellent mechanical, thermal and electrical properties, offer great promise to improve the weak properties in the thickness direction and impart multi-functionality without substantial weight addition to FRPs. This paper reviews the progress made to date on i) the techniques developed for integration of CNTs/ CNFs into FRPs, and ii) the effects of the addition of these nanofillers on the interlaminar properties, such as such interlaminar shear strength, interlaminar fracture toughness and impact damage resistance and tolerance, of FRPs. The key challenges and future prospects in the development of multiscale CNT-FRP composites for advanced applications are also highlighted.

Interlaminar Shear Strength of Carbon Fiber Epoxy Composite with Nickel Film (니켈 박막 첨가에 따른 탄소섬유 에폭시 복합재료의 층간 계면 특성)

  • Lee, Min-Kyung
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.94-98
    • /
    • 2015
  • This paper reports the effects of nickel film interleaves on the interlaminar shear strength(ILSS) of carbon fiber reinforced epoxy composites(CFRPs). A nickel thin film was deposited onto the prepreg by radio frequency(RF) sputtering at room temperature. The ILSS of the nickel film interleaved hybrid composites was increased compared to that of the composites without interleaves. To understand the mechanism of enhancement of the ILSS, the fracture surface of the tested specimens was examined by scanning electron microscopy(SEM). The metal interleaves were acted as a reinforcement for the matrix rich interface and the shear property of their composites improved by enhancing the resistance to matrix cracking.

Interlaminar Stress Analysis of the Mechanical Joint of the Composite Materials (복합적층판 기계적 체결부에 대한 층간응력해석)

  • 안용택;송관형
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.49-57
    • /
    • 2003
  • This method surely needs a hole that causes local strength and stiffness deterioration of the structure because of stress intensity. In this work, three dimensional stress analysis of pin-loaded joint for quasi-isotropic composite laminates was performed using commercial finite element software. Stress distribution was calculated near the edge of the pin-leaded hole and effects of the stacking sequence on the delamination were investigated. Also, the delamination strength of the composite laminates was predicted using the Ye-delamination failure criterion and compared with the experimental results. finally, newly modified failure criterion has been suggested owing to the consideration of effects of interlaminar normal stress on the delamination strength.

The Improvement of Interlaminar Shear Strength for Low Density 2-D Carbon/Carbon Composites by Additives (첨가제에 의한 저밀도 2-D 탄소/탄소 복합재의 층간전단강도 개선)

  • 손종석;정구훈;주혁종
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.845-853
    • /
    • 2000
  • The optimum cure cycle and carbonization condition were selected by the DSC and TGA analysis and green bodies were prepared by the method of hot press molding and then carbonized up to 140$0^{\circ}C$. Additives such as graphite powder, carbon black, milled carbon fiber and carbon fiber mat, which were considered to be effective in improving the interlaminar shear strength, were also added to check their effects on the density and porosity of products. Then, their relations with mechanical properties such as ILSS and flexural strength were investigated. The composites added 9 vol% of graphite powder showed the greatest values of ILSS and flexural strength. Otherwise, in case of adding carbon black, the composites showed the slight improvement of ILSS at its contents of 3 vol% but the flexural strength was decreased. When milled carbon fiber and carbon fiber mat were added, the lack of resin and the heat shrinkage during the carbonization caused the delamination, resulting in decreasing the density, ILSS and flexural strength.

  • PDF

Measurement Method of Residual Stresses in Thick Composite Cylinders (두꺼운 복합재 원통의 잔류응력 측정방법)

  • Kim, Jong-Woon;Park, Dong-Chang;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.245-248
    • /
    • 2005
  • During manufacturing thick composite cylinders, large thermal residual stresses are developed and induce catastrophic interlaminar failures. Since the residual stresses are dependent on many process parameters, such as temperature distribution during cure, cure shrinkage, winding tension, and migration of fibers, calculation of the residual stresses is very difficult. Therefore a radial-cut method have been used to measure the residual stresses in the composite cylinders. But the conventional radial-cut method needs to know numerous material properties which are not only troublesome to obtain but also vary with change of fiber arrangement during consolidation. In this paper, a new radial-cut method with cut-cylinder-bending test was proposed and the measured residual stresses were compared with calculated thermal residual stresses. It was found that the new radial-cut method which does not need to know any of material properties gave better estimation of residual stresses regardless of radial variation of material properties. Additionally, interlaminar tensile strength could be obtained by the cut-cylinder-bending test.

  • PDF

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

A Study of Mode II Interlaminar Fracture for CFRP Laminate Composite using the 4-point Bending CNF Specimen (4점굽힘 CNF 시험편을 이용한 CFRP적층 복합재 모드 II 층간파괴)

  • Kwon, Oh-Heon;Kang, Ji-Woong;Tae, Hwan-Jun;Hwang, Yeong-Yeun;Yun, Yu-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.34-39
    • /
    • 2010
  • Unidirectional Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness and strength. For those reasons, the use of the unidirectional CFRP has increased in jet fighters, aerospace structures. However, unidirectional CFRP composites have a lot of problems, especially delamination, compared with traditional materials such as steels and aluminums, and so forth. Therefore, the interlaminar fracture toughness for a laminate CFRP composite is very important. In this study, The mode II interlaminar fracture toughness was measured by using center notched flexure(CNF) test specimen. The CNF specimens using unidirectional carbon prepreg were fabricated by a hot-press with the gage pressure and temperature controller. And three kinds of a/L ratio was applied to these specimens. Here, we discuss the relations of the crack growth and the mode II interlaminar fracture under the four point bending CNF test. From the results, we shows that mode II interlaminar was occurred when the more $a_0$/L ratio, the less load. And $G_{IIC}$ also were obtained as 5.33, 2.9 and $0.58kJ/m^2$ according to $a_0$/L ratio=0.2, 0.3 and 0.4.